Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Meromorphic function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==On Riemann surfaces== On a [[Riemann surface]], every point admits an open neighborhood which is [[biholomorphism|biholomorphic]] to an open subset of the complex plane. Thereby the notion of a meromorphic function can be defined for every Riemann surface. When ''D'' is the entire [[Riemann sphere]], the field of meromorphic functions is simply the field of rational functions in one variable over the complex field, since one can prove that any meromorphic function on the sphere is rational. (This is a special case of the so-called [[GAGA]] principle.) For every [[Riemann surface]], a meromorphic function is the same as a holomorphic function that maps to the Riemann sphere and which is not the constant function equal to β. The poles correspond to those complex numbers which are mapped to β. On a non-compact [[Riemann surface]], every meromorphic function can be realized as a quotient of two (globally defined) holomorphic functions. In contrast, on a compact Riemann surface, every holomorphic function is constant, while there always exist non-constant meromorphic functions.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)