Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Method of analytic tableaux
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Propositional tableau with unification === The above rules for propositional tableau can be simplified by using uniform notation. In uniform notation, each formula is either of type <math>\alpha </math> (alpha) or of type <math>\beta </math> (beta). Each formula of type alpha is assigned the two components <math>\alpha_1, \alpha_2</math>, and each formula of type beta is assigned the two components <math>\beta_1, \beta_2</math>. Formulae of type alpha can be thought of as being conjunctive, as both <math>\alpha_1</math> and <math>\alpha_2</math> are implied by <math>\alpha</math> being true. Formulae of type beta can be thought of as being disjunctive, as either <math>\beta_1</math> or <math>\beta_2</math> is implied by <math>\beta</math> being true. The below tables shows how to determine the type, and the components, of any given [[propositional formula]].{{sfn|Smullyan|1995|pages=21-22}} {| | valign="top"| <math>\begin{array}{c|c|c} \alpha & \alpha_1 & \alpha_2 \\ \hline \boldsymbol{\mathsf{T}}(X \land Y) & \boldsymbol{\mathsf{T}} ( X ) & \boldsymbol{\mathsf{T}} ( Y )\\ \boldsymbol{\mathsf{F}}(X \lor Y) & \boldsymbol{\mathsf{F}} ( X ) & \boldsymbol{\mathsf{F}} ( Y )\\ \boldsymbol{\mathsf{F}}(X \to Y) & \boldsymbol{\mathsf{T}} ( X ) & \boldsymbol{\mathsf{F}} ( Y )\\ \boldsymbol{\mathsf{T}}(\neg X) & \boldsymbol{\mathsf{F}} ( X ) & \boldsymbol{\mathsf{F}} ( X )\\ \boldsymbol{\mathsf{F}}(\neg X) & \boldsymbol{\mathsf{T}} ( X ) & \boldsymbol{\mathsf{T}} ( X )\\ \end{array}</math> || {{Spaces|3}} || valign="top" | <math>\begin{array}{c|c|c} \beta & \beta_1 & \beta_2 \\ \hline \boldsymbol{\mathsf{F}}(X \land Y) & \boldsymbol{\mathsf{F}} ( X ) & \boldsymbol{\mathsf{F}} ( Y )\\ \boldsymbol{\mathsf{T}}(X \lor Y) & \boldsymbol{\mathsf{T}} ( X ) & \boldsymbol{\mathsf{T}} ( Y )\\ \boldsymbol{\mathsf{T}}(X \to Y) & \boldsymbol{\mathsf{F}} ( X ) & \boldsymbol{\mathsf{T}} ( Y )\\ \end{array}</math> |} <!-- {| | valign="top" | <math>\begin{array}{c|c|c} \alpha & \alpha_1 & \alpha_2 \\ \hline X \land Y & X & Y \\ \neg(X \lor Y) & \neg X & \neg Y \\ \neg(X \to Y) & X & \neg Y \\ \neg\neg X & X & X \\ \end{array}</math> || {{Spaces|3}} || valign="top" | <math>\begin{array}{c|c|c} \beta & \beta_1 & \beta_2 \\ \hline \neg(X \land Y) & \neg X & \neg Y \\ X \lor Y & X & Y \\ X \to Y & \neg X & Y \\ \end{array}</math> |} --> In each table, the left-most column shows all the possible structures for the formulae of type alpha or beta, and the right-most columns show their respective components. When constructing a propositional tableau using the above notation, whenever one encounters a formula of type alpha, its two components <math>\alpha_1,\alpha_2</math> are added to the current branch that is being expanded. Whenever one encounters a formula of type beta on some branch <math>\theta </math>, one can split <math>\theta </math> into two branches, one with the set {<math>\theta </math>, <math>\beta_1</math>} of formulae, and the other with the set {<math>\theta </math>, <math>\beta_2</math>} of formulae.{{sfn|Smullyan|2014|pages=88β89}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)