Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mixture distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Moments === Let {{math|''X''<sub>1</sub>}}, ..., {{math|''X''<sub>''n''</sub>}} denote random variables from the {{mvar|n}} component distributions, and let {{mvar|X}} denote a random variable from the mixture distribution. Then, for any function {{math|''H''(·)}} for which <math>\operatorname{E}[H(X_i)]</math> exists, and assuming that the component densities {{math|''p<sub>i</sub>''(''x'')}} exist, <math display="block">\begin{align} \operatorname{E}[H(X)] & = \int_{-\infty}^\infty H(x) \sum_{i = 1}^n w_i p_i(x) \, dx \\ & = \sum_{i = 1}^n w_i \int_{-\infty}^\infty p_i(x) H(x) \, dx = \sum_{i = 1}^n w_i \operatorname{E}[H(X_i)]. \end{align}</math> The {{mvar|j}}th moment about zero (i.e. choosing {{math|1=''H''(''x'') = ''x''{{i sup|''j''}}}}) is simply a weighted average of the {{mvar|j}}-th moments of the components. Moments about the mean {{math|1=''H''(''x'') = (''x − μ''){{i sup|''j''}}}} involve a binomial expansion:<ref>{{harvtxt|Frühwirth-Schnatter|2006|at=Ch.1.2.4}}</ref> <math display="block">\begin{align} \operatorname{E}\left[{\left(X - \mu\right)}^j\right] & = \sum_{i=1}^n w_i \operatorname{E}\left[{\left(X_i - \mu_i + \mu_i - \mu\right)}^j\right] \\ & = \sum_{i=1}^n w_i \sum_{k=0}^j \binom{j}{k} {\left(\mu_i - \mu\right)}^{j-k} \operatorname{E}\left[{\left(X_i - \mu_i\right)}^k\right], \end{align}</math> where {{math|''μ<sub>i</sub>''}} denotes the mean of the {{mvar|i}}-th component. In the case of a mixture of one-dimensional distributions with weights {{math|''w<sub>i</sub>''}}, means {{math|''μ<sub>i</sub>''}} and variances {{math|''σ''<sub>''i''</sub><sup>2</sup>}}, the total mean and variance will be: <math display="block"> \operatorname{E}[X] = \mu = \sum_{i = 1}^n w_i \mu_i ,</math><math display="block"> \begin{align} \operatorname{E}\left[(X - \mu)^2\right] & = \sigma^2 \\ & = \operatorname{E}[X^2] - \mu^2 & (\text{standard variance reformulation})\\ & = \left(\sum_{i=1}^n w_i \operatorname{E}\left[X_i^2\right]\right) - \mu^{2} \\ & = \sum_{i=1}^n w_i(\sigma_i^2 + \mu_i^2)- \mu^2 & ( \sigma_i^2 = \operatorname{E}[X_i^2] - \mu_i^2 \implies \operatorname{E}[X_i^2] = \sigma_i^2 + \mu_i^2) \end{align}</math> These relations highlight the potential of mixture distributions to display non-trivial higher-order moments such as [[skewness]] and [[kurtosis]] ([[fat tail]]s) and multi-modality, even in the absence of such features within the components themselves. Marron and Wand (1992) give an illustrative account of the flexibility of this framework.<ref name="Marron92">{{Cite journal|title=Exact Mean Integrated Squared Error |first1=J. S. |last1=Marron |first2=M. P. | last2=Wand | journal=[[The Annals of Statistics]]|volume=20 |year=1992| pages=712–736 |issue=2 | doi=10.1214/aos/1176348653|doi-access=free }}, http://projecteuclid.org/euclid.aos/1176348653</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)