Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mixture model
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Categorical mixture model==== [[File:nonbayesian-categorical-mixture.svg|right|250px|thumb|Non-Bayesian categorical mixture model using [[plate notation]]. Smaller squares indicate fixed parameters; larger circles indicate random variables. Filled-in shapes indicate known values. The indication [K] means a vector of size ''K''; likewise for [V].]] A typical non-Bayesian mixture model with [[categorical distribution|categorical]] observations looks like this: *<math>K,N:</math> as above *<math>\phi_{i=1 \dots K}, \boldsymbol\phi:</math> as above *<math>z_{i=1 \dots N}, x_{i=1 \dots N}:</math> as above *<math>V:</math> dimension of categorical observations, e.g., size of word vocabulary *<math>\theta_{i=1 \dots K, j=1 \dots V}:</math> probability for component <math>i</math> of observing item <math>j</math> *<math>\boldsymbol\theta_{i=1 \dots K}:</math> vector of dimension <math>V,</math> composed of <math>\theta_{i,1 \dots V};</math> must sum to 1 The random variables: :<math> \begin{array}{lcl} z_{i=1 \dots N} &\sim& \operatorname{Categorical}(\boldsymbol\phi) \\ x_{i=1 \dots N} &\sim& \text{Categorical}(\boldsymbol\theta_{z_i}) \end{array} </math> <!-- The original version, all in LaTeX. :<math> \begin{array}{lcl} K,N &=& \text{as above} \\ \phi_{i=1 \dots K}, \boldsymbol\phi &=& \text{as above} \\ z_{i=1 \dots N}, x_{i=1 \dots N} &=& \text{as above} \\ V &=& \text{dimension of categorical observations, e.g., size of word vocabulary} \\ \theta_{i=1 \dots K, j=1 \dots V} &=& \text{probability for component } i \text{ of observing the } j\text{th item} \\ \boldsymbol\theta_{i=1 \dots K} &=& V\text{-dimensional vector, composed of }\theta_{i,1 \dots V} \text{; must sum to 1} \\ z_{i=1 \dots N} &\sim& \operatorname{Categorical}(\boldsymbol\phi) \\ x_{i=1 \dots N} &\sim& \text{Categorical}(\boldsymbol\theta_{z_i}) \end{array} </math> --> {{clear}} [[File:bayesian-categorical-mixture.svg|right|300px|thumb|Bayesian categorical mixture model using [[plate notation]]. Smaller squares indicate fixed parameters; larger circles indicate random variables. Filled-in shapes indicate known values. The indication [K] means a vector of size ''K''; likewise for [V].]] A typical Bayesian mixture model with [[categorical distribution|categorical]] observations looks like this: *<math>K,N:</math> as above *<math>\phi_{i=1 \dots K}, \boldsymbol\phi:</math> as above *<math>z_{i=1 \dots N}, x_{i=1 \dots N}:</math> as above *<math>V:</math> dimension of categorical observations, e.g., size of word vocabulary *<math>\theta_{i=1 \dots K, j=1 \dots V}:</math> probability for component <math>i</math> of observing item <math>j</math> *<math>\boldsymbol\theta_{i=1 \dots K}:</math> vector of dimension <math>V,</math> composed of <math>\theta_{i,1 \dots V};</math> must sum to 1 *<math>\alpha:</math> shared concentration hyperparameter of <math>\boldsymbol\theta</math> for each component *<math>\beta:</math> concentration hyperparameter of <math>\boldsymbol\phi</math> The random variables: :<math> \begin{array}{lcl} \boldsymbol\phi &\sim& \operatorname{Symmetric-Dirichlet}_K(\beta) \\ \boldsymbol\theta_{i=1 \dots K} &\sim& \text{Symmetric-Dirichlet}_V(\alpha) \\ z_{i=1 \dots N} &\sim& \operatorname{Categorical}(\boldsymbol\phi) \\ x_{i=1 \dots N} &\sim& \text{Categorical}(\boldsymbol\theta_{z_i}) \end{array} </math> <!-- The (beginning of) equivalent of below, using no LaTeX. *''K'',''N'' = as above *φ<sub>1,...,''K''</sub>, '''φ''' as above *''z''<sub>''i''=1...''N''</sub>, ''x''<sub>''i''=1...''N''</sub> = as above * ''V'' = dimension of categorical observations, e.g., size of word vocabulary --> <!-- The equivalent using full LaTeX. :<math> \begin{array}{lcl} K,N &=& \mbox{as above} \\ \phi_{i=1 \dots K}, \boldsymbol\phi &=& \text{as above} \\ z_{i=1 \dots N}, x_{i=1 \dots N} &=& \text{as above} \\ V &=& \text{dimension of categorical observations, e.g., size of word vocabulary} \\ \theta_{i=1 \dots K, j=1 \dots V} &=& \text{probability for component } i \text{ of observing the } j\text{th item} \\ \boldsymbol\theta_{i=1 \dots K} &=& V\text{-dimensional vector, composed of }\theta_{i,1 \dots V} \text{; must sum to 1} \\ \alpha &=& \text{shared concentration hyperparameter of } \boldsymbol\theta \text{ for each component} \\ \beta &=& \text{concentration hyperparameter of } \boldsymbol\phi \\ \boldsymbol\phi &\sim& \operatorname{Symmetric-Dirichlet}_K(\beta) \\ \boldsymbol\theta_{i=1 \dots K} &\sim& \text{Symmetric-Dirichlet}_V(\alpha) \\ z_{i=1 \dots N} &\sim& \operatorname{Categorical}(\boldsymbol\phi) \\ x_{i=1 \dots N} &\sim& \text{Categorical}(\boldsymbol\theta_{z_i}) \end{array} </math> -->
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)