Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Moving frame
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Further details=== A moving frame always exists ''locally'', i.e., in some neighbourhood ''U'' of any point ''p'' in ''M''; however, the existence of a moving frame globally on ''M'' requires [[topological]] conditions. For example when ''M'' is a [[circle]], or more generally a [[torus]], such frames exist; but not when ''M'' is a 2-[[sphere]]. A manifold that does have a global moving frame is called ''[[parallelizable]]''. Note for example how the unit directions of [[latitude]] and [[longitude]] on the Earth's surface break down as a moving frame at the north and south poles. The '''method of moving frames''' of [[Γlie Cartan]] is based on taking a moving frame that is adapted to the particular problem being studied. For example, given a [[curve]] in space, the first three derivative vectors of the curve can in general define a frame at a point of it (cf. [[torsion tensor]] for a quantitative description β it is assumed here that the torsion is not zero). In fact, in the method of moving frames, one more often works with coframes rather than frames. More generally, moving frames may be viewed as sections of [[principal bundle]]s over open sets ''U''. The general Cartan method exploits this abstraction using the notion of a [[Cartan connection]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)