Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multiplicative function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Busche-Ramanujan identities == A multiplicative function <math>f</math> is said to be specially multiplicative if there is a completely multiplicative function <math>f_A</math> such that :<math> f(m) f(n) = \sum_{d\mid (m,n)} f(mn/d^2) f_A(d) </math> for all positive integers <math>m</math> and <math>n</math>, or equivalently :<math> f(mn) = \sum_{d\mid (m,n)} f(m/d) f(n/d) \mu(d) f_A(d) </math> for all positive integers <math>m</math> and <math>n</math>, where <math>\mu</math> is the Möbius function. These are known as Busche-Ramanujan identities. In 1906, E. Busche stated the identity :<math> \sigma_k(m) \sigma_k(n) = \sum_{d\mid (m,n)} \sigma_k(mn/d^2) d^k, </math> and, in 1915, S. Ramanujan gave the inverse form :<math> \sigma_k(mn) = \sum_{d\mid (m,n)} \sigma_k(m/d) \sigma_k(n/d) \mu(d) d^k </math> for <math>k=0</math>. S. Chowla gave the inverse form for general <math>k</math> in 1929, see P. J. McCarthy (1986). The study of Busche-Ramanujan identities begun from an attempt to better understand the special cases given by Busche and Ramanujan. It is known that quadratic functions <math>f=g_1\ast g_2</math> satisfy the Busche-Ramanujan identities with <math>f_A=g_1g_2</math>. Quadratic functions are exactly the same as specially multiplicative functions. Totients satisfy a restricted Busche-Ramanujan identity. For further details, see [[Ramaswamy S. Vaidyanathaswamy|R. Vaidyanathaswamy]] (1931).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)