Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Natural language processing
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Neural networks === {{Further|Artificial neural network}} A major drawback of statistical methods is that they require elaborate [[feature engineering]]. Since 2015,<ref>{{Cite web |last=Socher |first=Richard |title=Deep Learning For NLP-ACL 2012 Tutorial |url=https://www.socher.org/index.php/Main/DeepLearningForNLP-ACL2012Tutorial |access-date=2020-08-17 |website=www.socher.org}} This was an early Deep Learning tutorial at the ACL 2012 and met with both interest and (at the time) skepticism by most participants. Until then, neural learning was basically rejected because of its lack of statistical interpretability. Until 2015, deep learning had evolved into the major framework of NLP. [Link is broken, try http://web.stanford.edu/class/cs224n/]</ref> the statistical approach has been replaced by the [[Artificial neural network|neural networks]] approach, using [[semantic networks]]<ref>{{cite book |last1=Segev |first1=Elad |title=Semantic Network Analysis in Social Sciences |date=2022 |publisher=Routledge |location=London |isbn=9780367636524 |url=https://www.routledge.com/Semantic-Network-Analysis-in-Social-Sciences/Segev/p/book/9780367636524 |access-date=5 December 2021 |archive-date=5 December 2021 |archive-url=https://web.archive.org/web/20211205140726/https://www.routledge.com/Semantic-Network-Analysis-in-Social-Sciences/Segev/p/book/9780367636524 |url-status=live }}</ref> and [[word embedding]]s to capture semantic properties of words. Intermediate tasks (e.g., part-of-speech tagging and dependency parsing) are not needed anymore. [[Neural machine translation]], based on then-newly invented [[Seq2seq|sequence-to-sequence]] transformations, made obsolete the intermediate steps, such as word alignment, previously necessary for [[statistical machine translation]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)