Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Negative temperature
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Noninteracting two-level particles === {{multiple image | align = right | direction = vertical | footer = Entropy, thermodynamic beta, and temperature as a function of the energy for a system of {{mvar|N}} noninteracting two-level particles. | width1 = 235 | image1 = Entropy_vs_E_two_state.svg | width2 = 235 | image2 = Beta_vs_E_two_state.svg | width3 = 235 | image3 = Temperature_vs_E_two_state.svg }}{{Unreferenced section|date=July 2024}} The simplest example, albeit a rather nonphysical one, is to consider a system of {{mvar|N}} particles, each of which can take an energy of either {{math|+''ε''}} or {{math|−''ε''}} but are otherwise noninteracting. This can be understood as a limit of the [[Ising model]] in which the interaction term becomes negligible. The total energy of the system is :<math>E = \varepsilon\sum_{i=1}^N \sigma_i = \varepsilon j</math> where {{mvar|σ<sub>i</sub>}} is the sign of the {{mvar|i}}th particle and {{mvar|j}} is the number of particles with positive energy minus the number of particles with [[negative energy]]. From elementary [[combinatorics]], the total number of [[microstate (statistical mechanics)|microstates]] with this amount of energy is a [[binomial coefficient]]: :<math>\Omega_E = \binom{N}\frac{N + j}{2} = \frac{N!}{\left(\frac{N + j}{2}\right)! \left(\frac{N - j}{2}\right)!}.</math> By the [[fundamental assumption of statistical mechanics]], the entropy of this [[microcanonical ensemble]] is :<math>S = k_\text{B} \ln \Omega_E</math> We can solve for thermodynamic beta ({{math|1=''β'' = {{sfrac|1|''k''<sub>B</sub>''T''}}}}) by considering it as a [[central difference]] without taking the [[continuum limit]]: :<math>\begin{align} \beta &= \frac{1}{k_\mathrm{B}} \frac{\delta_{2\varepsilon}[S]}{2\varepsilon}\\[3pt] &= \frac{1}{2\varepsilon} \left( \ln \Omega_{E+\varepsilon} - \ln \Omega_{E-\varepsilon} \right)\\[3pt] &= \frac{1}{2\varepsilon} \ln \left( \frac{\left(\frac{N + j - 1}{2}\right)! \left(\frac{N - j + 1}{2}\right)!}{\left(\frac{N + j + 1}{2}\right)! \left(\frac{N - j - 1}{2}\right)!} \right)\\[3pt] &= \frac{1}{2\varepsilon} \ln \left( \frac{N - j + 1}{N + j + 1} \right). \end{align}</math> hence the temperature :<math>T(E) = \frac{2\varepsilon}{k_\text{B}}\left[\ln \left( \frac{(N + 1)\varepsilon - E}{(N + 1)\varepsilon + E} \right)\right]^{-1}.</math> This entire proof assumes the microcanonical ensemble with energy fixed and temperature being the emergent property. In the [[canonical ensemble]], the temperature is fixed and energy is the emergent property. This leads to ({{mvar|ε}} refers to microstates): :<math>\begin{align} Z(T) &= \sum_{i=1}^N e^{-\varepsilon_i\beta}\\[6pt] E(T) &= \frac{1}{Z}\sum_{i=1}^N \varepsilon_i e^{-\varepsilon_i\beta}\\[6pt] S(T) &= k_\text{B}\ln(Z) + \frac{E}{T} \end{align}</math> Following the previous example, we choose a state with two levels and two particles. This leads to microstates {{math|1=''ε''<sub>1</sub> = 0}}, {{math|1=''ε''<sub>2</sub> = 1}}, {{math|1=''ε''<sub>3</sub> = 1}}, and {{math|1=''ε''<sub>4</sub> = 2}}. :<math>\begin{align} Z(T) &= e^{-0\beta} + 2e^{-1\beta} + e^{-2\beta}\\[3pt] &= 1 + 2e^{-\beta} + e^{-2\beta}\\[6pt] E(T) &= \frac{0e^{-0\beta} + 2 \times 1e^{-1\beta} + 2e^{-2\beta}}{Z}\\[3pt] &= \frac{2e^{-\beta} + 2e^{-2\beta}}{Z}\\[3pt] &= \frac{2e^{-\beta} + 2e^{-2\beta}}{1 + 2e^{-\beta} + e^{-2\beta}}\\[6pt] S(T) &= k_\text{B}\ln\left(1 + 2e^{-\beta} + e^{-2\beta}\right) + \frac{2e^{-\beta} + 2e^{-2\beta}}{\left(1 + 2e^{-\beta} + e^{-2\beta}\right)T} \end{align}</math> The resulting values for {{mvar|S}}, {{mvar|E}}, and {{mvar|Z}} all increase with {{mvar|T}} and never need to enter a negative temperature regime.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)