Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Nilpotent matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Example 5=== Perhaps some of the most striking examples of nilpotent matrices are <math>n\times n</math> square matrices of the form: :<math>\begin{bmatrix} 2 & 2 & 2 & \cdots & 1-n \\ n+2 & 1 & 1 & \cdots & -n \\ 1 & n+2 & 1 & \cdots & -n \\ 1 & 1 & n+2 & \cdots & -n \\ \vdots & \vdots & \vdots & \ddots & \vdots \end{bmatrix}</math> The first few of which are: :<math>\begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix} \qquad \begin{bmatrix} 2 & 2 & -2 \\ 5 & 1 & -3 \\ 1 & 5 & -3 \end{bmatrix} \qquad \begin{bmatrix} 2 & 2 & 2 & -3 \\ 6 & 1 & 1 & -4 \\ 1 & 6 & 1 & -4 \\ 1 & 1 & 6 & -4 \end{bmatrix} \qquad \begin{bmatrix} 2 & 2 & 2 & 2 & -4 \\ 7 & 1 & 1 & 1 & -5 \\ 1 & 7 & 1 & 1 & -5 \\ 1 & 1 & 7 & 1 & -5 \\ 1 & 1 & 1 & 7 & -5 \end{bmatrix} \qquad \ldots </math> These matrices are nilpotent but there are no zero entries in any powers of them less than the index.<ref name="Mercer2005">{{cite web |url=http://www.idmercer.com/nilpotent.pdf |title=Finding "nonobvious" nilpotent matrices |last1=Mercer |first1=Idris D. |date=31 October 2005 |website=idmercer.com |publisher=self-published; personal credentials: PhD Mathematics, [[Simon Fraser University]] |access-date=5 April 2023 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)