Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Order statistic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== The joint distribution of the order statistics of the uniform distribution ==== Similarly, for ''i'' < ''j'', the [[joint probability distribution|joint probability density function]] of the two order statistics ''U''<sub>(''i'')</sub> < ''U''<sub>(''j'')</sub> can be shown to be :<math>f_{U_{(i)},U_{(j)}}(u,v) = n!{u^{i-1}\over (i-1)!}{(v-u)^{j-i-1}\over(j-i-1)!}{(1-v)^{n-j}\over (n-j)!}</math> which is (up to terms of higher order than <math>O(du\,dv)</math>) the probability that ''i'' β 1, 1, ''j'' β 1 β ''i'', 1 and ''n'' β ''j'' sample elements fall in the intervals <math>(0,u)</math>, <math>(u,u+du)</math>, <math>(u+du,v)</math>, <math>(v,v+dv)</math>, <math>(v+dv,1)</math> respectively. One reasons in an entirely analogous way to derive the higher-order joint distributions. Perhaps surprisingly, the joint density of the ''n'' order statistics turns out to be ''constant'': :<math>f_{U_{(1)},U_{(2)},\ldots,U_{(n)}}(u_{1},u_{2},\ldots,u_{n}) = n!.</math> One way to understand this is that the unordered sample does have constant density equal to 1, and that there are ''n''! different permutations of the sample corresponding to the same sequence of order statistics. This is related to the fact that 1/''n''! is the volume of the region <math>0<u_1<\cdots<u_n<1</math>. It is also related with another particularity of order statistics of uniform random variables: It follows from the [[BRS-inequality]] that the maximum expected number of uniform U(0,1] random variables one can choose from a sample of size n with a sum up not exceeding <math>0 <s <n/2</math> is bounded above by <math> \sqrt{2sn} </math>, which is thus invariant on the set of all <math> s, n </math> with constant product <math> s n </math>. Using the above formulas, one can derive the distribution of the range of the order statistics, that is the distribution of <math>U_{(n)}-U_{(1)}</math>, i.e. maximum minus the minimum. More generally, for <math>n\geq k>j\geq 1</math>, <math>U_{(k)}-U_{(j)} </math> also has a beta distribution: <math display="block">U_{(k)}-U_{(j)}\sim \operatorname{Beta}(k-j, n-(k-j)+1)</math>From these formulas we can derive the covariance between two order statistics:<math display="block">\operatorname{Cov}(U_{(k)},U_{(j)})=\frac{j(n-k+1)}{(n+1)^2(n+2)}</math>The formula follows from noting that <math display="block">\operatorname{Var}(U_{(k)}-U_{(j)})=\operatorname{Var}(U_{(k)}) + \operatorname{Var}(U_{(j)})-2\cdot \operatorname{Cov}(U_{(k)},U_{(j)}) =\frac{k(n-k+1)}{(n+1)^2(n+2)}+\frac{j(n-j+1)}{(n+1)^2(n+2)}-2\cdot \operatorname{Cov}(U_{(k)},U_{(j)})</math>and comparing that with <math display="block">\operatorname{Var}(U)=\frac{(k-j)(n-(k-j)+1)}{(n+1)^2(n+2)}</math>where <math>U\sim \operatorname{Beta}(k-j,n-(k-j)+1)</math>, which is the actual distribution of the difference.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)