Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ordered exponential
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Example == Given a manifold <math>M</math> where for a <math>e \in TM</math> with [[Group theory|group]] transformation <math>g: e \mapsto g e</math> it holds at a point <math>x \in M</math>: : <math>de(x) + \operatorname{J}(x)e(x) = 0.</math> Here, <math>d</math> denotes [[exterior differentiation]] and <math>\operatorname{J}(x)</math> is the connection operator (1-form field) acting on <math>e(x)</math>. When integrating above equation it holds (now, <math>\operatorname{J}(x)</math> is the connection operator expressed in a coordinate basis) : <math>e(y) = \operatorname{P} \exp \left(- \int_x^y J(\gamma (t)) \gamma '(t) \, dt \right) e(x)</math> with the path-ordering operator <math>\operatorname{P}</math> that orders factors in order of the path <math>\gamma(t) \in M</math>. For the special case that <math>\operatorname{J}(x)</math> is an [[Antisymmetry|antisymmetric]] operator and <math>\gamma</math> is an infinitesimal rectangle with edge lengths <math>|u|,|v|</math> and corners at points <math>x,x+u,x+u+v,x+v,</math> above expression simplifies as follows : : <math> \begin{align} & \operatorname{OE}[- \operatorname{J}]e(x) \\[5pt] = {} & \exp [- \operatorname{J}(x+v) (-v)] \exp [- \operatorname{J}(x+u+v) (-u)] \exp [- \operatorname{J}(x+u) v] \exp [- \operatorname{J}(x) u] e(x) \\[5pt] = {} & [1 - \operatorname{J}(x+v) (-v)][1 - \operatorname{J}(x+u+v) (-u)][1 - \operatorname{J}(x+u) v][1 - \operatorname{J}(x) u] e(x). \end{align} </math> Hence, it holds the group transformation identity <math>\operatorname{OE}[- \operatorname{J}] \mapsto g \operatorname{OE}[\operatorname{J}] g^{-1}</math>. If <math>- \operatorname{J}(x)</math> is a smooth connection, expanding above quantity to second order in infinitesimal quantities <math>|u|,|v|</math> one obtains for the ordered exponential the identity with a correction term that is proportional to the [[Riemann curvature tensor| curvature tensor]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)