Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Permeability (electromagnetism)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Values for some common materials == The following table should be used with caution as the permeability of ferromagnetic materials varies greatly with field strength and specific composition and fabrication. For example, 4% electrical steel has an initial relative permeability (at or near 0 T) of 2,000 and a maximum of 38,000 at T = 1 <ref name="kaye-laby">G.W.C. Kaye & T.H. Laby, Table of Physical and Chemical Constants, 14th ed, Longman, "Si Steel"</ref><ref>https://publikationen.bibliothek.kit.edu/1000066142/4047647 for the 38,000 figure 5.2</ref> and different range of values at different percent of Si and manufacturing process, and, indeed, the relative permeability of any material at a sufficiently high field strength trends toward 1 (at magnetic saturation). {| class="wikitable sortable" |+ Magnetic susceptibility and permeability data for selected materials |- ! Medium ! class="unsortable" | Susceptibility,<br/>volumetric, SI, ''χ''<sub>m</sub> ! data-sort-type="number" | Relative permeability, <br />{{abbr|max.|maximum}}, ''μ''/''μ''<sub>0</sub> ! class="unsortable" | Permeability, <br/>''μ'' (H/m) ! class="unsortable" | Magnetic <br/>field ! class="unsortable" | Frequency, {{abbr|max.|maximum}} |- | [[Vacuum]] | 0 | 1, exactly<ref>by definition</ref> | {{physconst|mu0|round=9|unit=no|ref=no}} | | |- | [[Metglas]] 2714A (annealed) | | {{val|1000000}}<ref name="Metglas">{{cite web |url=http://www.metglas.com/products/page5_1_2_6.htm |title="Metglas Magnetic Alloy 2714A", ''Metglas'' |publisher=Metglas.com |access-date=2011-11-08 |url-status=dead |archive-url=https://web.archive.org/web/20120206100947/http://www.metglas.com/products/page5_1_2_6.htm |archive-date=2012-02-06 }}</ref> | {{val|1.26|e=0}} | At 0.5 T | 100 kHz |- | [[Iron]] (99.95% pure Fe annealed in H) | | {{val|200000}}<ref name="Iron">{{cite web|url=http://hyperphysics.phy-astr.gsu.edu/hbase/tables/magprop.html#c2 |title="Magnetic Properties of Ferromagnetic Materials", ''Iron'' |publisher=C.R Nave Georgia State University |access-date=2013-12-01}}</ref> | {{val|2.5|e=-1}} | | |- | [[Permalloy]] | | {{val|100000}}<ref name="Jiles">{{cite book | last = Jiles | first = David | title = Introduction to Magnetism and Magnetic Materials | publisher = CRC Press | year = 1998 | page= 354 | url = https://books.google.com/books?id=axyWXjsdorMC&q=mu+metal&pg=PA354 | isbn = 978-0-412-79860-3}}</ref> | {{val|1.25|e=-1}} | At 0.002 T | |- | [https://web.archive.org/web/20200805140106/https://www.magnetec.de/en/materials-products/ NANOPERM®] | | {{val|80000}}<ref name="Nanoperm">{{cite web|url=http://www.magnetec.de/eng/pdf/werkstoffkennlinien_nano_e.pdf |title="Typical material properties of NANOPERM", ''Magnetec'' |access-date=2011-11-08}}</ref> | {{val|1.0|e=-1}} | At 0.5 T | 10 kHz |- | [[Mu-metal]] | | {{val|50000}}<ref name="nickal">{{cite web|url=http://www.nickel-alloys.net/nickelalloys.html |title=Nickel Alloys-Stainless Steels, Nickel Copper Alloys, Nickel Chromium Alloys, Low Expansion Alloys |publisher=Nickel-alloys.net |access-date=2011-11-08}}</ref> | {{val|6.3|e=-2}} | | |- | [[Mu-metal]] | | {{val|20000}}<ref name="hyper">{{cite web|url=http://hyperphysics.phy-astr.gsu.edu/hbase/solids/ferro.html |title="Relative Permeability", ''Hyperphysics'' |publisher=Hyperphysics.phy-astr.gsu.edu |access-date=2011-11-08}}</ref> | {{val|2.5|e=-2}} | At 0.002 T | |- | Cobalt-iron <br />(high permeability strip material) | | {{val|18000}}<ref name="vacuumschmeltze">{{cite web |url=http://www.vacuumschmelze.com/fileadmin/Medienbiliothek_2010/Downloads/HT/2013-03-27_Soft_Magnetic_Cobalt-_Iron_Alloys_final_version.pdf |title="Soft Magnetic Cobalt-Iron Alloys", ''Vacuumschmeltze'' |publisher=www.vacuumschmeltze.com |access-date=2013-08-03 |url-status=dead |archive-url=http://arquivo.pt/wayback/20160523203358/http%3A//www.vacuumschmelze.com/fileadmin/Medienbiliothek_2010/Downloads/HT/2013%2D03%2D27_Soft_Magnetic_Cobalt%2D_Iron_Alloys_final_version.pdf |archive-date=2016-05-23 }}</ref> | {{val|2.3|e=-2}} | | |- | [[Iron]] (99.8% pure) | | {{val|5000}}<ref name="Iron" /> | {{val|6.3|e=-3}} | | |- | [[Electrical steel]] | | 2000 – 38000<ref name="kaye-laby"/><ref name="ellingson">{{cite web |url=https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Electro-Optics/Book%3A_Electromagnetics_II_(Ellingson)/11%3A_Constitutive_Parameters_of_Some_Common_Materials/11.02%3A_Permeability_of_Some_Common_Materials |title="Permeability of Some Common Materials"|date=2 April 2020 | access-date=2022-12-09 }}</ref><ref>https://publikationen.bibliothek.kit.edu/1000066142/4047647 for 38000 at 1 T figure 5.2</ref> | {{val|5.0|e=-3}} | At 0.002 T, 1 T | |- | [[Stainless steel#Types|Ferritic stainless steel]] (annealed) | | 1000 – 1800<ref name="Carpenter">{{cite web|url=https://www.cartech.com/en/alloy-techzone/technical-information/technical-articles/magnetic-properties-of-stainless-steels|title=Magnetic Properties of Stainless Steels|year=2013|publisher=Carpenter Technology Corporation|author=Carpenter Technology Corporation}}</ref> | {{val|1.26|e=-3}} – {{val|2.26|e=-3}} | | |- | [[Martensitic stainless steel]] (annealed) | | 750 – 950<ref name="Carpenter" /> | {{val|9.42|e=-4}} – {{val|1.19|e=-3}} | | |- | [[Ferrite (magnet)#Soft ferrites|Ferrite]] (manganese zinc) | | 350 – 20 000<ref>According to Ferroxcube (formerly Philips) Soft Ferrites data. https://www.ferroxcube.com/zh-CN/download/download/21</ref> | {{val|4.4|e=-4}} – {{val|2.51|e=-2}} | At 0.25 mT | {{abbr|{{abbr|approx.|approximately}}|approximately}} 100 Hz – 4 MHz |- | [[Ferrite (magnet)#Soft ferrites|Ferrite]] (nickel zinc) | | 10 – 2300<ref>According to Siemens Matsushita SIFERRIT data. https://www.thierry-lequeu.fr/data/SIFERRIT.pdf</ref> | {{val|1.26|e=-5}} – {{val|2.89|e=-3}} | At ≤ 0.25 mT | {{abbr|approx.|approximately}} 1 kHz – 400 MHz{{Citation needed|date=February 2012}} |- | [[Ferrite (magnet)#Soft ferrites|Ferrite]] (magnesium manganese zinc) | | 350 – 500<ref>According to PRAMET Šumperk fonox data. https://www.doe.cz/wp-content/uploads/fonox.pdf</ref> | {{val|4.4|e=-4}} – {{val|6.28|e=-4}} | At 0.25 mT | |- | [[Ferrite (magnet)#Soft ferrites|Ferrite]] (cobalt nickel zinc) | | 40 – 125<ref>According to Ferronics Incorporated data. http://www.ferronics.com/catalog/ferronics_catalog.pdf</ref> | {{val|5.03|e=-5}} – {{val|1.57|e=-4}} | At 0.001 T | {{abbr|approx.|approximately}} 2 MHz – 150 MHz |- | Mo-Fe-Ni powder compound <br />(molypermalloy powder, MPP) | | 14 – 550<ref>According to Magnetics MPP-molypermalloy powder data. https://www.mag-inc.com/Products/Powder-Cores/MPP-Cores</ref> | {{val|1.76|e=-5}} – {{val|6.91|e=-4}} | | {{abbr|approx.|approximately}} 50 Hz – 3 MHz |- | Nickel iron powder compound | | 14 – 160<ref>According to MMG IOM Limited High Flux data. http://www.mmgca.com/catalogue/MMG-Sailcrest.pdf</ref> | {{val|1.76|e=-5}} – {{val|2.01|e=-4}} | At 0.001 T | {{abbr|approx.|approximately}} 50 Hz – 2 MHz |- | Al-Si-Fe powder compound (Sendust) | | 14 – 160<ref>According to Micrometals-Arnold Sendust data. https://www.micrometalsarnoldpowdercores.com/products/materials/sendust</ref> | {{val|1.76|e=-5}} – {{val|2.01|e=-4}} | | {{abbr|approx.|approximately}} 50 Hz – 5 MHz<ref>According to Micrometals-Arnold High Frequency Sendust data. https://www.micrometalsarnoldpowdercores.com/products/materials/sendust-high-frequency</ref> |- | Iron powder compound | | 14 – 100<ref>{{Cite web|url=https://micrometals.com/materials/pc|title=Micrometals Powder Core Solutions|website=micrometals.com|access-date=2019-08-17}}</ref> | {{val|1.76|e=-5}} – {{val|1.26|e=-4}} | At 0.001 T | {{abbr|approx.|approximately}} 50 Hz – 220 MHz |- | Silicon iron powder compound | | 19 – 90<ref>According to Magnetics XFlux data. https://www.mag-inc.com/Products/Powder-Cores/XFlux-Cores</ref><ref>{{Cite web|url=https://micrometals.com/materials/200c|title=Micrometals Powder Core Solutions|website=micrometals.com|access-date=2019-08-18}}</ref> | {{val|2.39|e=-5}} – {{val|1.13|e=-4}} | | {{abbr|approx.|approximately}} 50 Hz – 40 MHz |- | Carbonyl iron powder compound | | 4 – 35<ref>{{Cite web|url=https://www.micrometals.com/materials/rf|title=Micrometals Powder Core Solutions|website=www.micrometals.com|access-date=2019-08-17}}</ref> | {{val|5.03|e=-6}} – {{val|4.4|e=-5}} | At 0.001 T | {{abbr|approx.|approximately}} 20 kHz – 500 MHz |- | [[Steel|Carbon steel]] | | {{val|100}}<ref name="hyper" /> | {{val|1.26|e=-4}} | At 0.002 T | |- | [[Nickel]] | | 100<ref name="hyper" /> – 600 | {{val|1.26|e=-4}} – {{val|7.54|e=-4}} | At 0.002 T | |- | [[Martensitic stainless steel]] (hardened) | | 40 – 95<ref name="Carpenter" /> | {{val|5.0|e=-5}} – {{val|1.2|e=-4}} | | |- | [[Stainless steel#Types|Austenitic stainless steel]] | | 1.003 – 1.05<ref name="Carpenter" /><ref name="SSAS">{{cite web|url=http://www.bssa.org.uk/cms/File/SSAS2.81-Magnetic%20Properties.pdf|title=Magnetic Properties of Stainless Steel|author=British Stainless Steel Association|publisher=Stainless Steel Advisory Service|year=2000}}</ref>{{efn|The permeability of austenitic stainless steel strongly depends on the history of mechanical strain applied to it, e.g. by [[cold forming|cold working]]}} | {{val|1.260|e=-6}} – {{val|8.8|e=-6}} | | |- | [[Neodymium magnet]] | | 1.05<ref>{{cite book|url=https://books.google.com/books?id=_y3LSh1XTJYC&pg=PT232|page=232|title=Design of Rotating Electrical Machines|author1=Juha Pyrhönen |author2=Tapani Jokinen |author3=Valéria Hrabovcová |publisher=John Wiley and Sons|year=2009|isbn=978-0-470-69516-6}}</ref> | {{val|1.32|e=-6}} | | |- | [[Platinum]] | | {{val|1.000265}} | {{val|1.256970|e=-6}} | | |- | [[Aluminum]] | {{val|2.22|e=-5}}<ref name="clarke">{{cite web|author=Richard A. Clarke |url=http://www.ee.surrey.ac.uk/Workshop/advice/coils/mu/ |title=Magnetic properties of materials, surrey.ac.uk |publisher=Ee.surrey.ac.uk |access-date=2011-11-08}}</ref> | {{val|1.000022}} | {{val|1.256665|e=-6}} | | |- | [[Wood]] | | {{val|1.00000043}}<ref name="clarke" /> | {{val|1.25663760|e=-6}} | | |- | [[Air]] | | {{val|1.00000037}}<ref name="Cullity2008">B. D. Cullity and C. D. Graham (2008), Introduction to Magnetic Materials, 2nd edition, 568 pp., p.16</ref> | {{val|1.25663753|e=-6}} | | |- | [[Concrete]] (dry) | | 1<ref>{{cite web|author=NDT.net |url=http://www.ndt.net/article/ndtce03/papers/v078/v078.htm |title=Determination of dielectric properties of insitu concrete at radar frequencies |publisher=Ndt.net |access-date=2011-11-08}}</ref> | | | |- | [[Hydrogen]] | {{val|-2.2|e=-9}}<ref name="clarke" /> | {{val|1.0000000}} | {{val|1.2566371|e=-6}} | | |- | [[Teflon]] | | {{val|1.0000}} | {{val|1.2567|e=-6}}<ref name="hyper"/> | | |- | [[Sapphire]] | {{val|-2.1|e=-7}} | {{val|0.99999976}} | {{val|1.2566368|e=-6}} | | |- | [[Copper]] | {{val|-6.4|e=-6}} or <br/>{{val|-9.2|e=-6}}<ref name="clarke" /> | {{val|0.999994}} | {{val|1.256629|e=-6}} | | |- | [[Water]] | {{val|-8.0|e=-6}} | {{val|0.999992}} | {{val|1.256627|e=-6}} | | |- | [[Bismuth]] | {{val|-1.66|e=-4}} | {{val|0.999834}} | {{val|1.25643|e=-6}} | | |- | [[Pyrolytic carbon]] | | {{val|0.9996}} | {{val|1.256|e=-6}} | | |- | [[Superconductor]]s | −1 | 0 | 0 | | |} [[File: Permeability of ferromagnet by Zureks.svg|thumb|Magnetisation curve for ferromagnets (and ferrimagnets) and corresponding permeability]] A good [[Magnetic core#Magnetic core materials|magnetic core material]] must have high permeability.<ref>{{cite web| url=http://www.ti.com/lit/ml/slup124/slup124.pdf| title=Magnetics Design 2 – Magnetic Core Characteristics| author=Dixon, L H| publisher=Texas Instruments| year=2001}}</ref> For ''passive'' [[magnetic levitation]] a relative permeability below 1 is needed (corresponding to a negative susceptibility). Permeability varies with a magnetic field. Values shown above are approximate and valid only at the magnetic fields shown. They are given for a zero frequency; in practice, the permeability is generally a function of the frequency. When the frequency is considered, the permeability can be [[Complex number|complex]], corresponding to the in-phase and out of phase response.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)