Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Perron–Frobenius theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Further properties=== Let ''A'' be an irreducible non-negative matrix, then: # (I+''A'')<sup>''n''−1</sup> is a positive matrix. (Meyer<ref name="Meyer"/> [https://web.archive.org/web/20100307021652/http://www.matrixanalysis.com/Chapter8.pdf claim 8.3.5 p. 672]). For a non-negative ''A'', this is also a sufficient condition.<ref name="Minc">{{cite book |first=Henryk |last= Minc |author-link=Henryk Minc |title=Nonnegative matrices |isbn=0-471-83966-3 |year=1988 |publisher=John Wiley & Sons |location=New York |page=6 [Corollary 2.2] }}</ref> # Wielandt's theorem.<ref>{{Cite book |author=Gradshtein, Izrailʹ Solomonovich |url=http://worldcat.org/oclc/922964628 |title=Table of integrals, series, and products |date=18 September 2014 |publisher=Elsevier |isbn=978-0-12-384934-2 |oclc=922964628}}</ref>{{clarify|reason=What are the restrictions on ''B''?|date=March 2015}} If |''B''|<''A'', then ''ρ''(''B'')≤''ρ''(''A''). If equality holds (i.e. if ''μ=ρ(A)e<sup>iφ</sup>'' is eigenvalue for ''B''), then ''B'' = ''e''<sup>''iφ''</sup> ''D AD''<sup>−1</sup> for some diagonal unitary matrix ''D'' (i.e. diagonal elements of ''D'' equals to ''e''<sup>''iΘ''<sub>''l''</sub></sup>, non-diagonal are zero).<ref name="Meyer675">{{harvnb|Meyer|2000|pp=[http://www.matrixanalysis.com/Chapter8.pdf claim 8.3.11 p. 675] {{cite web |url=http://www.matrixanalysis.com/Chapter8.pdf |title=Archived copy |access-date=2010-03-07 |url-status=dead |archive-url=https://web.archive.org/web/20100307021652/http://www.matrixanalysis.com/Chapter8.pdf |archive-date=March 7, 2010 }}}}</ref> # If some power ''A<sup>q</sup>'' is reducible, then it is completely reducible, i.e. for some permutation matrix ''P'', it is true that: <math> P A^q P^{-1}= \begin{pmatrix} A_1 & O & O & \dots & O \\ O & A_2 & O & \dots & O \\ \vdots & \vdots & \vdots & & \vdots \\ O & O & O & \dots & A_d \\ \end{pmatrix} </math>, where ''A<sub>i</sub>'' are irreducible matrices having the same maximal eigenvalue. The number of these matrices ''d'' is the greatest common divisor of ''q'' and ''h'', where ''h'' is period of ''A''.<ref>{{harvnb|Gantmacher|2000|p=section XIII.5 theorem 9}}</ref> # If ''c''(''x'') ''= x<sup>n</sup> + c<sub>k<sub>1</sub></sub> x<sup>n-k<sub>1</sub></sup> + c<sub>k<sub>2</sub></sub> x<sup>n-k<sub>2</sub></sup> + ... + c<sub>k<sub>s</sub></sub> x<sup>n-k<sub>s</sub></sup>'' is the characteristic polynomial of ''A'' in which only the non-zero terms are listed, then the period of ''A'' equals the greatest common divisor of ''k<sub>1</sub>, k<sub>2</sub>, ... , k<sub>s</sub>''.<ref>{{harvnb|Meyer|2000|pp=[http://www.matrixanalysis.com/Chapter8.pdf page 679] {{cite web |url=http://www.matrixanalysis.com/Chapter8.pdf |title=Archived copy |access-date=2010-03-07 |url-status=dead |archive-url=https://web.archive.org/web/20100307021652/http://www.matrixanalysis.com/Chapter8.pdf |archive-date=March 7, 2010 }}}}</ref> # [[Cesàro summation|Cesàro]] [[summability theory|averages]]: <math> \lim_{k \rightarrow \infty} 1/k\sum_{i=0,...,k} A^i/r^i = ( v w^T),</math> where the left and right eigenvectors for ''A'' are normalized so that ''w''<sup>''T''</sup>''v'' = 1. Moreover, the matrix ''v w<sup>T</sup>'' is the [[Spectral theorem|spectral projection]] corresponding to ''r'', the Perron projection.<ref>{{harvnb|Meyer|2000|pp=[http://www.matrixanalysis.com/Chapter8.pdf example 8.3.2 p. 677] {{cite web |url=http://www.matrixanalysis.com/Chapter8.pdf |title=Archived copy |access-date=2010-03-07 |url-status=dead |archive-url=https://web.archive.org/web/20100307021652/http://www.matrixanalysis.com/Chapter8.pdf |archive-date=March 7, 2010 }}}}</ref> # Let ''r'' be the Perron–Frobenius eigenvalue, then the adjoint matrix for (''r''-''A'') is positive.<ref>{{harvnb|Gantmacher|2000|p=[https://books.google.com/books?id=cyX32q8ZP5cC&q=preceding%20section&pg=PA62 section XIII.2.2 page 62]}}</ref> # If ''A'' has at least one non-zero diagonal element, then ''A'' is primitive.<ref>{{harvnb|Meyer|2000|pp= [http://www.matrixanalysis.com/Chapter8.pdf example 8.3.3 p. 678] {{cite web |url=http://www.matrixanalysis.com/Chapter8.pdf |title=Archived copy |access-date=2010-03-07 |url-status=dead |archive-url=https://web.archive.org/web/20100307021652/http://www.matrixanalysis.com/Chapter8.pdf |archive-date=March 7, 2010 }}}}</ref> # If 0 ≤ ''A'' < ''B'', then ''r''<sub>''A''</sub> ≤ ''r''<sub>''B.''</sub> Moreover, if ''B'' is irreducible, then the inequality is strict: ''r<sub>A</sub> < r<sub>B</sub>''. A matrix ''A'' is primitive provided it is non-negative and ''A<sup>m</sup>'' is positive for some ''m'', and hence ''A<sup>k</sup>'' is positive for all ''k ≥ m''. To check primitivity, one needs a bound on how large the minimal such ''m'' can be, depending on the size of ''A'':<ref>{{harvnb|Meyer|2000|pp=[http://www.matrixanalysis.com/Chapter8.pdf chapter 8 example 8.3.4 page 679 and exercise 8.3.9 p. 685] {{cite web |url=http://www.matrixanalysis.com/Chapter8.pdf |title=Archived copy |access-date=2010-03-07 |url-status=dead |archive-url=https://web.archive.org/web/20100307021652/http://www.matrixanalysis.com/Chapter8.pdf |archive-date=March 7, 2010 }}}}</ref> * If ''A'' is a non-negative primitive matrix of size ''n'', then ''A''<sup>''n''<sup>2</sup> − 2''n'' + 2</sup> is positive. Moreover, this is the best possible result, since for the matrix ''M'' below, the power ''M<sup>k</sup>'' is not positive for every ''k'' < ''n''<sup>2</sup> − 2''n'' + 2, since (''M''<sup>''n''<sup>2</sup> − 2''n''+1</sup>)<sub>1,1</sub> = 0. :<math>M= \left(\begin{smallmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ 1 & 1 & 0 & 0 & \cdots & 0 \end{smallmatrix}\right) </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)