Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pollard's rho algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Example: factoring {{mvar|n}} = 10403 = 101 Β· 103 == The following table shows numbers produced by the algorithm, starting with <math>x=2</math> and using the polynomial <math>g(x) = (x^2 + 1) \bmod 10403</math>. The third and fourth columns of the table contain additional information not known by the algorithm. They are included to show how the algorithm works. {| class="wikitable" style="text-align:right;" ! {{tmath|x}} !! {{tmath|y }} !! {{tmath|x \bmod 101}} !! {{tmath|y \bmod 101}} !! step |- | 2 || 2 || 2 || 2 || 0 |- | 5 || 2 || 5 || 2 || 1 |- | 26 || 2 || 26 || 2 || 2 |- | 677 || 26 || 71 || 26 || 3 |- | 598 || 26 || 93 || 26 || 4 |- | 3903 || 26 || 65 || 26 || 5 |- | 3418 || 26 || 85 || 26 || 6 |- | 156 || 3418 || 55 || 85 || 7 |- | 3531 || 3418 ||{{rh|align=right}}| 97 || 85 || 8 |- | 5168 || 3418 || 17 || 85 || 9 |- | 3724 || 3418 || 88 || 85 || 10 |- | 978 || 3418 || 69 || 85 || 11 |- | 9812 || 3418 || 15 || 85 || 12 |- | 5983 || 3418 || 24 || 85 || 13 |- | 9970 || 3418 || 72 || 85 || 14 |- | 236 || 9970 || 34 || 72 || 15 |- | 3682 || 9970 || 46 || 72 || 16 |- | 2016 || 9970 ||{{rh|align=right}}| 97 || 72 || 17 |- | 7087 || 9970 || 17 || 72 || 18 |- | 10289 || 9970 || 88 || 72 || 19 |- | 2594 || 9970 || 69 || 72 || 20 |- | 8499 || 9970 || 15 || 72 || 21 |- | 4973 || 9970 || 24 || 72 || 22 |- | 2799 || 9970 ||{{rh|align=right}}| 72 || '''72''' || 23 |} The first repetition modulo 101 is 97 which occurs in step 17. The repetition is not detected until step 23, when <math>x \equiv y \pmod{101}</math>. This causes <math>\gcd (x - y, n) = \gcd (2799 - 9970, n)</math> to be <math>p = 101</math>, and a factor is found.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)