Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Prime number theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Prime-counting function in terms of the logarithmic integral == In a handwritten note on a reprint of his 1838 paper "{{lang|fr|Sur l'usage des séries infinies dans la théorie des nombres}}", which he mailed to Gauss, Dirichlet conjectured (under a slightly different form appealing to a series rather than an integral) that an even better approximation to {{math|''π''(''x'')}} is given by the [[logarithmic integral function|offset logarithmic integral]] function {{math|Li(''x'')}}, defined by : <math> \operatorname{Li}(x) = \int_2^x \frac{dt}{\log t} = \operatorname{li}(x) - \operatorname{li}(2). </math> Indeed, this integral is strongly suggestive of the notion that the "density" of primes around {{mvar|t}} should be {{math|1 / log ''t''}}. This function is related to the logarithm by the [[asymptotic expansion]] : <math> \operatorname{Li}(x) \sim \frac{x}{\log x} \sum_{k=0}^\infty \frac{k!}{(\log x)^k} = \frac{x}{\log x} + \frac{x}{(\log x)^2} + \frac{2x}{(\log x)^3} + \cdots </math> So, the prime number theorem can also be written as {{math|''π''(''x'') ~ Li(''x'')}}. In fact, in another paper<ref name="de la Vallée Poussin1899">{{citation|last=de la Vallée Poussin|first=Charles-Jean|author-link=Charles Jean de la Vallée Poussin|year=1899|title=Sur la fonction ζ(s) de Riemann et le nombre des nombres premiers inférieurs a une limite donnée.|journal=Mémoires couronnés de l'Académie de Belgique|publisher=Imprimeur de l'Académie Royale de Belgique|volume=59|pages=1–74|url={{Google Books|_O0GAAAAYAAJ|Sur la fonction ζ(s) de Riemann et le nombre des nombres premiers inférieurs a une limite donnée.|plainurl=yes}}}}</ref> in 1899 de la Vallée Poussin proved that : <math> \pi(x) = \operatorname{Li} (x) + O \left(x e^{-a\sqrt{\log x}}\right) \quad\text{as } x \to \infty</math> for some positive constant {{mvar|a}}, where {{math|''O''(...)}} is the [[big O notation|big {{mvar|O}} notation]]. This has been improved to : <math>\pi(x) = \operatorname{li} (x) + O \left(x \exp \left( -\frac{A(\log x)^\frac35}{(\log \log x)^\frac15} \right) \right)</math> where <math>A = 0.2098</math>.<ref name="Ford">{{cite journal |author = Kevin Ford |author-link = Kevin Ford (mathematician) |title=Vinogradov's Integral and Bounds for the Riemann Zeta Function |journal=Proc. London Math. Soc. |date=2002 |volume=85 |issue = 3 |pages=565–633 |url=https://faculty.math.illinois.edu/~ford/wwwpapers/zetabd.pdf |doi=10.1112/S0024611502013655 |arxiv = 1910.08209 |s2cid = 121144007 }}</ref> In 2016, [[Timothy Trudgian]] proved an explicit upper bound for the difference between <math>\pi(x)</math> and <math>\operatorname{li}(x)</math>: : <math>\big| \pi(x) - \operatorname{li}(x) \big| \le 0.2795 \frac{x}{(\log x)^{3/4}} \exp \left( -\sqrt{ \frac{\log x}{6.455} } \right)</math> for <math>x \ge 229</math>.<ref>{{cite journal |author = Timothy Trudgian | author-link=Timothy Trudgian | date = February 2016 |title = Updating the error term in the prime number theorem |journal = Ramanujan Journal |volume = 39 |issue = 2 |pages=225–234 |doi = 10.1007/s11139-014-9656-6 |arxiv = 1401.2689 |s2cid = 11013503 }}</ref> The connection between the Riemann zeta function and {{math|''π''(''x'')}} is one reason the [[Riemann hypothesis]] has considerable importance in number theory: if established, it would yield a far better estimate of the error involved in the prime number theorem than is available today. More specifically, [[Helge von Koch]] showed in 1901<ref>{{cite journal |first=Helge |last=von Koch |year=1901 |title=Sur la distribution des nombres premiers |journal=[[Acta Mathematica]] |volume=24 |issue=1 |pages=159–182 |doi=10.1007/BF02403071 |lang=fr |trans-title=On the distribution of prime numbers|mr=1554926 |s2cid=119914826 |url=https://zenodo.org/record/2347595|doi-access=free }}</ref> that if the Riemann hypothesis is true, the error term in the above relation can be improved to : <math> \pi(x) = \operatorname{Li} (x) + O\left(\sqrt x \log x\right) </math> (this last estimate is in fact equivalent to the Riemann hypothesis). The constant involved in the big {{mvar|O}} notation was estimated in 1976 by [[Lowell Schoenfeld]],<ref>{{cite journal |last=Schoenfeld |first=Lowell |title=Sharper Bounds for the Chebyshev Functions {{math|''{{not a typo|ϑ}}''(''x'')}} and {{math|''ψ''(''x'')}}. II |journal=Mathematics of Computation |volume=30 |issue=134 |year=1976 |pages=337–360 |doi=10.2307/2005976 |jstor=2005976 | mr=0457374 }}</ref> assuming the Riemann hypothesis: : <math>\big|\pi(x) - \operatorname{li}(x)\big| < \frac{\sqrt x \log x}{8\pi}</math> for all {{math|''x'' ≥ 2657}}. He also derived a similar bound for the [[Chebyshev function|Chebyshev prime-counting function]] {{mvar|ψ}}: : <math>\big|\psi(x) - x\big| < \frac{\sqrt x (\log x)^2 }{8\pi}</math> for all {{math|''x'' ≥ 73.2}} . This latter bound has been shown to express a variance to mean [[power law]] (when regarded as a random function over the integers) and {{sfrac| {{mvar|f}} }} [[pink noise|noise]] and to also correspond to the [[Tweedie distribution|Tweedie compound Poisson distribution]]. (The Tweedie distributions represent a family of [[scale invariant]] distributions that serve as foci of convergence for a generalization of the [[central limit theorem]].<ref>{{cite journal |last1=Jørgensen |first1=Bent |last2=Martínez |first2=José Raúl |last3=Tsao |first3=Min |year=1994 |title=Asymptotic behaviour of the variance function |journal=Scandinavian Journal of Statistics |volume=21 |issue=3 |pages=223–243 |mr=1292637 |jstor=4616314 }}</ref>) A lower bound is also derived by [[John Edensor Littlewood|J. E. Littlewood]], assuming the Riemann hypothesis:<ref name="Littlewood1914">{{citation |first=J.E. |last= Littlewood |author-link=John Edensor Littlewood |year=1914 |title=Sur la distribution des nombres premiers |journal=[[Comptes Rendus]] |volume=158 |pages= 1869–1872 | jfm=45.0305.01}}</ref><ref>{{cite journal |first1=G. H. |last1=Hardy |author-link1=G. H. Hardy |first2=J. E. |last2=Littlewood |author-link2=John Edensor Littlewood |year=1916 |title=Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes |journal=[[Acta Mathematica]] |volume=41 |pages=119–196 |doi=10.1007/BF02422942 |url=https://link.springer.com/article/10.1007/BF02422942}}</ref><ref> {{cite book |last1=Davenport |first1=Harold |author1-link=Harold Davenport |last2=Montgomery |first2=Hugh L. |author2-link=Hugh Montgomery (mathematician) |year=2000 |title=Multiplicative Number Theory |edition=revised 3rd |series=Graduate Texts in Mathematics |volume=74 |publisher=[[Springer Publishing|Springer]] |isbn=978-0-387-95097-6 }}</ref> : <math>\big|\pi(x) - \operatorname{li}(x)\big| = \Omega \left(\sqrt x\frac{\log\log\log x}{\log x} \right)</math> The [[Logarithmic integral function|logarithmic integral]] {{math|li(''x'')}} is larger than {{math|''π''(''x'')}} for "small" values of {{mvar|x}}. This is because it is (in some sense) counting not primes, but prime powers, where a power {{mvar|p{{sup|n}}}} of a prime {{mvar|p}} is counted as {{sfrac|1| {{mvar|n}} }} of a prime. This suggests that {{math|li(''x'')}} should usually be larger than {{math|''π''(''x'')}} by roughly <math>\ \tfrac{1}{2} \operatorname{li}(\sqrt{x})\ ,</math> and in particular should always be larger than {{math|''π''(''x'')}}. However, in 1914, Littlewood proved that <math>\ \pi(x) - \operatorname{li}(x)\ </math> changes sign infinitely often.<ref name="Littlewood1914"/> The first value of {{mvar|x}} where {{math|''π''(''x'')}} exceeds {{math|li(''x'')}} is probably around {{math|''x'' ~ {{10^|316}} }}; see the article on [[Skewes' number]] for more details. (On the other hand, the [[offset logarithmic integral]] {{math|Li(''x'')}} is smaller than {{math|''π''(''x'')}} already for {{math|''x'' {{=}} 2}}; indeed, {{math|Li(2) {{=}} 0}}, while {{math|''π''(2) {{=}} 1}}.)
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)