Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Protein complex
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Essential proteins in protein complexes == [[Image:Essential proteins in yeast complexes.png|thumb|right|250px|Essential proteins in yeast complexes occur much less randomly than expected by chance. Modified after Ryan et al. 2013<ref name="Ryan2013"/>]] Although some early studies<ref name="Jeong2001">{{Cite journal | pmid = 11333967 | year = 2001 | last1 = Jeong | first1 = H | title = Lethality and centrality in protein networks | journal = Nature | volume = 411 | issue = 6833 | pages = 41–2 | last2 = Mason | first2 = S. P. | last3 = Barabási | first3 = A. L. | last4 = Oltvai | first4 = Z. N. | doi = 10.1038/35075138 | arxiv = cond-mat/0105306 | bibcode = 2001Natur.411...41J | s2cid = 258942 }}</ref> suggested a strong correlation between essentiality and protein interaction degree (the "centrality-lethality" rule) subsequent analyses have shown that this correlation is weak for binary or transient interactions (e.g., [[Yeast two hybrid|yeast two-hybrid]]).<ref name="Yu2008">{{Cite journal | pmid = 18719252 | year = 2008 | last1 = Yu | first1 = H | title = High-quality binary protein interaction map of the yeast interactome network | journal = Science | volume = 322 | issue = 5898 | pages = 104–10 | last2 = Braun | first2 = P | last3 = Yildirim | first3 = M. A. | last4 = Lemmens | first4 = I | last5 = Venkatesan | first5 = K | last6 = Sahalie | first6 = J | last7 = Hirozane-Kishikawa | first7 = T | last8 = Gebreab | first8 = F | last9 = Li | first9 = N | last10 = Simonis | first10 = N | last11 = Hao | first11 = T | last12 = Rual | first12 = J. F. | last13 = Dricot | first13 = A | last14 = Vazquez | first14 = A | last15 = Murray | first15 = R. R. | last16 = Simon | first16 = C | last17 = Tardivo | first17 = L | last18 = Tam | first18 = S | last19 = Svrzikapa | first19 = N | last20 = Fan | first20 = C | last21 = De Smet | first21 = A. S. | last22 = Motyl | first22 = A | last23 = Hudson | first23 = M. E. | last24 = Park | first24 = J | last25 = Xin | first25 = X | last26 = Cusick | first26 = M. E. | last27 = Moore | first27 = T | last28 = Boone | first28 = C | last29 = Snyder | first29 = M | last30 = Roth | first30 = F. P. | doi = 10.1126/science.1158684 | pmc = 2746753 | bibcode = 2008Sci...322..104Y }}</ref><ref name="Zotenko2008">{{Cite journal | pmid = 18670624 | year = 2008 | last1 = Zotenko | first1 = E | title = Why do hubs in the yeast protein interaction network tend to be essential: Reexamining the connection between the network topology and essentiality | journal = PLOS Computational Biology | volume = 4 | issue = 8 | pages = e1000140 | last2 = Mestre | first2 = J | last3 = O'Leary | first3 = D. P. | author3-link = Dianne P. O'Leary | last4 = Przytycka | first4 = T. M. | author4-link = Teresa Przytycka | doi = 10.1371/journal.pcbi.1000140 | pmc = 2467474 | bibcode = 2008PLSCB...4E0140Z | doi-access = free }}</ref> However, the correlation is robust for networks of stable co-complex interactions. In fact, a disproportionate number of [[essential genes]] belong to protein complexes.<ref name="Hart2007">{{Cite journal | pmid = 17605818 | year = 2007 | last1 = Hart | first1 = G. T. | title = A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality | journal = BMC Bioinformatics | volume = 8 | pages = 236 | last2 = Lee | first2 = I | last3 = Marcotte | first3 = E. R. | doi = 10.1186/1471-2105-8-236 | pmc = 1940025 | doi-access = free }}</ref> This led to the conclusion that essentiality is a property of molecular machines (i.e. complexes) rather than individual components.<ref name="Hart2007"/> Wang et al. (2009) noted that larger protein complexes are more likely to be essential, explaining why essential genes are more likely to have high co-complex interaction degree.<ref name="Wang2009">{{Cite journal | pmid = 19176519 | year = 2009 | last1 = Wang | first1 = H | title = A complex-based reconstruction of the Saccharomyces cerevisiae interactome | journal = Molecular & Cellular Proteomics | volume = 8 | issue = 6 | pages = 1361–81 | last2 = Kakaradov | first2 = B | last3 = Collins | first3 = S. R. | last4 = Karotki | first4 = L | last5 = Fiedler | first5 = D | last6 = Shales | first6 = M | last7 = Shokat | first7 = K. M. | last8 = Walther | first8 = T. C. | last9 = Krogan | first9 = N. J. | last10 = Koller | first10 = D | doi = 10.1074/mcp.M800490-MCP200 | doi-access = free | pmc = 2690481 }}</ref> Ryan et al. (2013) referred to the observation that entire complexes appear essential as "'''modular essentiality'''".<ref name="Ryan2013">{{Cite journal | pmid = 23661563 | year = 2013 | last1 = Ryan | first1 = C. J. | title = All or nothing: Protein complexes flip essentiality between distantly related eukaryotes | journal = Genome Biology and Evolution | volume = 5 | issue = 6 | pages = 1049–59 | last2 = Krogan | first2 = N. J. | last3 = Cunningham | first3 = P | last4 = Cagney | first4 = G | doi = 10.1093/gbe/evt074 | pmc = 3698920 }}</ref> These authors also showed that complexes tend to be composed of either essential or non-essential proteins rather than showing a random distribution (see Figure). However, this not an all or nothing phenomenon: only about 26% (105/401) of yeast complexes consist of solely essential or solely nonessential subunits.<ref name="Ryan2013" /> In humans, genes whose protein products belong to the same complex are more likely to result in the same disease phenotype.<ref name="Fraser2007">{{Cite journal | pmid = 18042286 | year = 2007 | last1 = Fraser | first1 = H. B. | title = Using protein complexes to predict phenotypic effects of gene mutation | journal = Genome Biology | volume = 8 | issue = 11 | pages = R252 | last2 = Plotkin | first2 = J. B. | doi = 10.1186/gb-2007-8-11-r252 | pmc = 2258176 | doi-access = free }}</ref><ref name="Lage2007">{{Cite journal | pmid = 17344885 | year = 2007 | last1 = Lage | first1 = K | title = A human phenome-interactome network of protein complexes implicated in genetic disorders | journal = Nature Biotechnology | volume = 25 | issue = 3 | pages = 309–16 | last2 = Karlberg | first2 = E. O. | last3 = Størling | first3 = Z. M. | last4 = Olason | first4 = P. I. | last5 = Pedersen | first5 = A. G. | last6 = Rigina | first6 = O | last7 = Hinsby | first7 = A. M. | last8 = Tümer | first8 = Z | last9 = Pociot | first9 = F | last10 = Tommerup | first10 = N | last11 = Moreau | first11 = Y | last12 = Brunak | first12 = S | doi = 10.1038/nbt1295 | s2cid = 5691546 | url = https://lirias.kuleuven.be/handle/123456789/74164 }}</ref><ref name="Oti2007">{{Cite journal | pmid = 17204041 | year = 2007 | last1 = Oti | first1 = M | title = The modular nature of genetic diseases | journal = Clinical Genetics | volume = 71 | issue = 1 | pages = 1–11 | last2 = Brunner | first2 = H. G. | doi = 10.1111/j.1399-0004.2006.00708.x | s2cid = 24615025 | doi-access = free }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)