Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quadratic equation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Discriminant=== [[File:Quadratic eq discriminant.svg|thumb|right|Figure 3. Discriminant signs|alt=Figure 3. This figure plots three quadratic functions on a single Cartesian plane graph to illustrate the effects of discriminant values. When the discriminant, delta, is positive, the parabola intersects the {{math|''x''}}-axis at two points. When delta is zero, the vertex of the parabola touches the {{math|''x''}}-axis at a single point. When delta is negative, the parabola does not intersect the {{math|''x''}}-axis at all.]] In the quadratic formula, the expression underneath the square root sign is called the ''[[discriminant]]'' of the quadratic equation, and is often represented using an upper case {{math|''D''}} or an upper case Greek [[Delta (letter)|delta]]:<ref>'''Δ''' is the initial of the [[Greek language|Greek]] word '''Δ'''ιακρίνουσα, ''Diakrínousa'', discriminant.</ref> <math display="block">\Delta = b^2 - 4ac.</math> A quadratic equation with ''real'' coefficients can have either one or two distinct real roots, or two distinct complex roots. In this case the discriminant determines the number and nature of the roots. There are three cases: *If the discriminant is positive, then there are two distinct roots <math display="block">\frac{-b + \sqrt {\Delta}}{2a} \quad\text{and}\quad \frac{-b - \sqrt {\Delta}}{2a},</math> both of which are real numbers. For quadratic equations with [[rational number|rational]] coefficients, if the discriminant is a [[square number]], then the roots are rational—in other cases they may be [[quadratic irrational]]s. *If the discriminant is zero, then there is exactly one [[real number|real]] root <math>-\frac{b}{2a},</math> sometimes called a repeated or [[multiple root|double root]] or two equal roots. *If the discriminant is negative, then there are no real roots. Rather, there are two distinct (non-real) [[complex number|complex]] roots<ref>{{cite book|last1=Achatz|first1=Thomas|last2=Anderson|first2=John G.|last3=McKenzie|first3=Kathleen|title=Technical Shop Mathematics|year=2005|publisher=Industrial Press|isbn=978-0-8311-3086-2|url=https://books.google.com/books?id=YOdtemSmzQQC&q=quadratic+formula&pg=PA276|page=277}}</ref><math display="block"> -\frac{b}{2a} + i \frac{\sqrt {-\Delta}}{2a} \quad\text{and}\quad -\frac{b}{2a} - i \frac{\sqrt {-\Delta}}{2a}, </math> which are [[complex conjugate]]s of each other. In these expressions {{math|''i''}} is the [[imaginary unit]]. Thus the roots are distinct if and only if the discriminant is non-zero, and the roots are real if and only if the discriminant is non-negative.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)