Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quantile
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Estimating quantiles from a sample== One problem which frequently arises is estimating a quantile of a (very large or infinite) population based on a finite sample of size {{mvar|N}}. Modern statistical packages rely on a number of techniques to [[Estimation theory|estimate]] the quantiles. [[Rob J. Hyndman|Hyndman]] and Fan compiled a [[Taxonomy (general)|taxonomy]] of nine algorithms<ref>{{cite journal |last1=Hyndman |first1=Rob J. |author-link1=Rob J. Hyndman |last2=Fan |first2=Yanan |title=Sample Quantiles in Statistical Packages |journal=American Statistician |date=November 1996 |volume=50 |issue=4 |pages=361–365 |doi=10.2307/2684934 |jstor=2684934 |publisher=American Statistical Association |url=https://www.researchgate.net/publication/222105754}}</ref> used by various software packages. All methods compute {{mvar|Q<sub>p</sub>}}, the estimate for the {{mvar|p}}-quantile (the {{mvar|k}}-th {{mvar|q}}-quantile, where {{math|''p'' {{=}} ''k''/''q''}}) from a sample of size {{mvar|N}} by computing a real valued index {{mvar|h}}. When {{mvar|h}} is an integer, the {{mvar|h}}-th smallest of the {{mvar|N}} values, {{mvar|x<sub>h</sub>}}, is the quantile estimate. Otherwise a rounding or interpolation scheme is used to compute the quantile estimate from {{mvar|h}}, {{math|''x''<sub>⌊''h''⌋</sub>}}, and {{math|''x''<sub>⌈''h''⌉</sub>}}. (For notation, see [[floor and ceiling functions]]). The first three are piecewise constant, changing abruptly at each data point, while the last six use linear interpolation between data points, and differ only in how the index {{mvar|h}} used to choose the point along the piecewise linear interpolation curve, is chosen. [[Mathematica]],<ref>[http://reference.wolfram.com/language/ref/Quantile.html#DetailsAndOptions Mathematica Documentation] See 'Details' section</ref> [[Matlab]],<ref>{{Cite web|url=https://uk.mathworks.com/matlabcentral/fileexchange/46555-quantile-calculation|title=Quantile calculation|website=uk.mathworks.com}}</ref> [[R (programming language)|R]]<ref>{{cite book |last1=Frohne |first1=Ivan |last2=Hyndman |first2=Rob J. |author-link2=Rob J. Hyndman |title=Sample Quantiles |publisher=R Project |url=http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html |isbn=978-3-900051-07-5 |year=2009}}</ref> and [[GNU Octave]]<ref name="Function Reference: quantile – Octave-Forge – SourceForge">{{cite web |title=Function Reference: quantile – Octave-Forge – SourceForge |url=http://octave.sourceforge.net/octave/function/quantile.html|access-date=6 September 2013}}</ref> programming languages support all nine sample quantile methods. [[SAS (software)|SAS]] includes five sample quantile methods, [[SciPy]]<ref>{{Cite web|url=https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.mquantiles.html|title=scipy.stats.mstats.mquantiles — SciPy v1.4.1 Reference Guide|website=docs.scipy.org}}</ref> and [[Maple (software)|Maple]]<ref>{{Cite web|url=https://www.maplesoft.com/support/help/maple/view.aspx?path=Statistics/Quantile|title=Statistics – Maple Programming Help|website=www.maplesoft.com}}</ref> both include eight, [[EViews]]<ref>{{cite web|url=http://www.eviews.com/help/EViews%209%20Help/graphs.020.09.html#ww140852 |title=EViews 9 Help |access-date=April 4, 2016 |url-status=dead |archive-url=https://web.archive.org/web/20160416123322/http://www.eviews.com/help/EViews%209%20Help/graphs.020.09.html |archive-date=April 16, 2016 }}</ref> and [[Julia (programming language)|Julia]]<ref>{{cite web|url=https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.quantile |title=Statistics – Julia Documentation |access-date=June 17, 2023}}</ref> include the six piecewise linear functions, [[Stata]]<ref>[https://www.stata.com/manuals/dpctile.pdf Stata documentation for the pctile and xtile commands] See 'Methods and formulas' section.</ref> includes two, [[Python (programming language)|Python]]<ref>{{Cite web|url=https://docs.python.org/3/library/statistics.html#statistics.quantiles|title=statistics — Mathematical statistics functions — Python 3.8.3rc1 documentation|website=docs.python.org}}</ref> includes two, and [[Microsoft Excel]] includes two. Mathematica, SciPy and Julia support arbitrary parameters for methods which allow for other, non-standard, methods. The estimate types and interpolation schemes used include: {| class="wikitable" |- ! Type ! {{mvar|h}} ! {{mvar|Q<sub>p</sub>}} ! Notes |- | R‑1, SAS‑3, Maple‑1 | {{mvar|Np}} | {{math|''x''<sub>⌈''h''⌉</sub>}} | Inverse of [[empirical distribution function]]. |- | R‑2, SAS‑5, Maple‑2, Stata | {{math|''Np'' + 1/2}} | {{math|(''x''<sub>⌈''h'' – 1/2⌉</sub> + ''x''<sub>⌊''h'' + 1/2⌋</sub>) / 2}} | The same as R-1, but with averaging at discontinuities. |- | R‑3, SAS‑2 | {{math|''Np'' − 1/2}} | {{math|''x''<sub>⌊''h''⌉</sub>}} | The observation numbered closest to {{mvar|Np}}. Here, {{math|⌊''h''⌉}} indicates rounding to the nearest integer, [[Rounding#Round half to even|choosing the even integer in the case of a tie]]. |- | R‑4, SAS‑1, SciPy‑(0,1), Julia‑(0,1), Maple‑3 | {{mvar|Np}} |rowspan=6| {{math|''x''<sub>⌊''h''⌋</sub> + (''h'' − ⌊''h''⌋) (''x''<sub>⌈''h''⌉</sub> − ''x''<sub>⌊''h''⌋</sub>)}} | Linear interpolation of the inverse of the empirical distribution function. |- | R‑5, SciPy‑(1/2,1/2), Julia‑(1/2,1/2), Maple‑4 | {{math|''Np'' + 1/2}} | Piecewise linear function where the knots are the values midway through the steps of the empirical distribution function. |- | R‑6, Excel, Python, SAS‑4, SciPy‑(0,0), Julia-(0,0), Maple‑5, Stata‑altdef | {{math|(''N'' + 1)''p''}} | Linear interpolation of the expectations for the order statistics for the uniform distribution on [0,1]. That is, it is the linear interpolation between points {{math|(''p''<sub>''h''</sub>, ''x''<sub>''h''</sub>)}}, where {{math|1=''p''<sub>''h''</sub> = ''h''/(''N''+1)}} is the probability that the last of ({{math|''N''+1}}) randomly drawn values will not exceed the {{mvar|h}}-th smallest of the first {{mvar|N}} randomly drawn values. |- | R‑7, Excel, Python, SciPy‑(1,1), Julia-(1,1), Maple‑6, NumPy | {{math|(''N'' − 1)''p'' + 1}} | Linear interpolation of the modes for the order statistics for the uniform distribution on [0,1]. |- | R‑8, SciPy‑(1/3,1/3), Julia‑(1/3,1/3), Maple‑7 | {{math|(''N'' + 1/3)''p'' + 1/3}} | Linear interpolation of the approximate medians for order statistics. |- | R‑9, SciPy‑(3/8,3/8), Julia‑(3/8,3/8), Maple‑8 | {{math|(''N'' + 1/4)''p'' + 3/8}} | The resulting quantile estimates are approximately unbiased for the expected order statistics if {{mvar|x}} is normally distributed. |} Notes: *R‑1 through R‑3 are piecewise constant, with discontinuities. *R‑4 and following are piecewise linear, without discontinuities, but differ in how {{mvar|h}} is computed. *R‑3 and R‑4 are not symmetric in that they do not give {{math|''h'' {{=}} (''N'' + 1) / 2}} when {{math|''p'' {{=}} 1/2}}. *Excel's PERCENTILE.EXC and Python's default "exclusive" method are equivalent to R‑6. *Excel's PERCENTILE and PERCENTILE.INC and Python's optional "inclusive" method are equivalent to R‑7. This is R's and Julia's default method. *Packages differ in how they estimate quantiles beyond the lowest and highest values in the sample, i.e. {{math|''p'' < 1/''N''}} and {{math|''p'' > (''N'' − 1)/''N''}}. Choices include returning an error value, computing linear extrapolation, or assuming a constant value. Of the techniques, Hyndman and Fan recommend R-8, but most statistical software packages have chosen R-6 or R-7 as the default.<ref>{{cite web |title=Sample quantiles 20 years later |first=Rob J. |last=Hyndman |author-link=Rob J. Hyndman |url=https://robjhyndman.com/hyndsight/sample-quantiles-20-years-later/ |date=28 March 2016 |access-date=2020-11-30 |website=Hyndsignt blog }}</ref> The [[standard error (statistics)|standard error]] of a quantile estimate can in general be estimated via the [[bootstrap (statistics)|bootstrap]]. The Maritz–Jarrett method can also be used.<ref>{{cite book |first=Rand R. |last=Wilcox |title=Introduction to Robust Estimation and Hypothesis Testing |year=2010 |publisher=Academic Press |isbn=978-0-12-751542-7 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)