Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quantum harmonic oscillator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Coherent states=== {{main|Coherent state}} [[File:Coherent state gif.gif|thumb|right|450px|Coherent state dynamics for <math>\alpha = \sqrt{10}</math>, in units of the harmonic oscillator length <math>x_0=\sqrt{\hbar/m\omega}</math>, showing the probability density <math>|\psi(x,t)|^2</math> and the quantum phase (color).]] The [[Coherent states#The wavefunction of a coherent state|coherent states]] (also known as Glauber states) of the harmonic oscillator are special nondispersive [[wave packet]]s, with minimum uncertainty {{math|1=''Ο<sub>x</sub>'' ''Ο<sub>p</sub>'' = {{frac|''β''|2}}}}, whose [[observable]]s' [[Expectation value (quantum mechanics)|expectation values]] evolve like a classical system. They are eigenvectors of the annihilation operator, ''not'' the Hamiltonian, and form an [[Overcompleteness|overcomplete]] basis which consequentially lacks orthogonality.{{sfnp|Zwiebach|2022|pp=481-492}} The coherent states are indexed by <math>\alpha \in \mathbb{C}</math> and expressed in the {{math|{{braket|ket|''n''}}}} basis as <math display="block">|\alpha\rangle = \sum_{n=0}^\infty |n\rangle \langle n | \alpha \rangle = e^{-\frac{1}{2} |\alpha|^2} \sum_{n=0}^\infty\frac{\alpha^n}{\sqrt{n!}} |n\rangle = e^{-\frac{1}{2} |\alpha|^2} e^{\alpha a^\dagger} e^{-{\alpha^* a}} |0\rangle.</math> Since coherent states are not energy eigenstates, their time evolution is not a simple shift in wavefunction phase. The time-evolved states are, however, also coherent states but with phase-shifting parameter {{mvar|Ξ±}} instead: <math>\alpha(t) = \alpha(0) e^{-i\omega t} = \alpha_0 e^{-i\omega t}</math>.<math display="block">|\alpha(t)\rangle = \sum_{n=0}^\infty e^{-i\left(n+\frac{1}{2}\right) \omega t}|n\rangle \langle n | \alpha \rangle = e^{\frac{-i\omega t}{2}}e^{-\frac{1}{2} |\alpha|^2} \sum_{n=0}^\infty\frac{(\alpha e^{-i\omega t})^n}{\sqrt{n!}} |n\rangle = e^{-\frac{i\omega t}{2}}|\alpha e^{-i\omega t}\rangle </math> Because <math>a \left| 0 \right\rangle = 0 </math> and via the Kermack-McCrae identity, the last form is equivalent to a [[Unitary operator|unitary]] [[displacement operator]] acting on the ground state: <math>|\alpha\rangle=e^{\alpha \hat a^\dagger - \alpha^*\hat a}|0\rangle = D(\alpha)|0\rangle</math>. Calculating the expectation values: <math>\langle \hat{x} \rangle_{\alpha(t)} = \sqrt{\frac{2\hbar}{m\omega}}|\alpha_0|\cos{(\omega t - \phi)} </math> <math>\langle \hat{p} \rangle_{\alpha(t)} = -\sqrt{2m\hbar \omega}|\alpha_0|\sin{(\omega t - \phi)} </math> where <math>\phi </math> is the phase contributed by complex {{mvar|Ξ±}}. These equations confirm the oscillating behavior of the particle. The uncertainties calculated using the numeric method are: <math>\sigma_x(t)=\sqrt{\frac{\hbar}{2m\omega}} </math> <math>\sigma_p(t) = \sqrt{\frac{m\hbar\omega}{2}} </math> which gives <math display="inline">\sigma_x(t)\sigma_p(t) = \frac{\hbar}{2} </math>. Since the only wavefunction that can have lowest position-momentum uncertainty, <math display="inline">\frac{\hbar}{2} </math>, is a gaussian wavefunction, and since the coherent state wavefunction has minimum position-momentum uncertainty, we note that the general gaussian wavefunction in quantum mechanics has the form:<math display="block">\psi_\alpha(x')= \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{\frac{i}{\hbar} \langle\hat{p}\rangle_\alpha (x' - \frac{\langle\hat{x}\rangle_\alpha}{2}) - \frac{m\omega}{2\hbar}(x' - \langle\hat{x}\rangle_\alpha)^2} .</math>Substituting the expectation values as a function of time, gives the required time varying wavefunction.<br /> The probability of each energy eigenstates can be calculated to find the energy distribution of the wavefunction: <math>P(E_n)=|\langle n | \alpha \rangle|^2 = \frac{e^{-|\alpha|^2}|\alpha|^{2n}}{n!}</math> which corresponds to [[Poisson distribution]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)