Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quaternion
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Hamilton product === For two elements {{math|''a''<sub>1</sub> + ''b''<sub>1</sub>'''i''' + ''c''<sub>1</sub>'''j''' + ''d''<sub>1</sub>'''k'''}} and {{math|''a''<sub>2</sub> + ''b''<sub>2</sub>'''i''' + ''c''<sub>2</sub>'''j''' + ''d''<sub>2</sub>'''k'''}}, their product, called the '''Hamilton product''' ({{math|''a''<sub>1</sub> + ''b''<sub>1</sub>'''i''' + ''c''<sub>1</sub>'''j''' + ''d''<sub>1</sub>'''k'''}}) ({{math|''a''<sub>2</sub> + ''b''<sub>2</sub>'''i''' + ''c''<sub>2</sub>'''j''' + ''d''<sub>2</sub>'''k'''}}), is determined by the products of the basis elements and the [[distributive law]]. The distributive law makes it possible to expand the product so that it is a sum of products of basis elements. This gives the following expression: <math display=block>\begin{alignat}{4} &a_1a_2 &&+ a_1b_2 \mathbf i &&+ a_1c_2 \mathbf j &&+ a_1d_2 \mathbf k\\ {}+{} &b_1a_2 \mathbf i &&+ b_1b_2 \mathbf i^2 &&+ b_1c_2 \mathbf{ij} &&+ b_1d_2 \mathbf{ik}\\ {}+{} &c_1a_2 \mathbf j &&+ c_1b_2 \mathbf{ji} &&+ c_1c_2 \mathbf j^2 &&+ c_1d_2 \mathbf{jk}\\ {}+{} &d_1a_2 \mathbf k &&+ d_1b_2 \mathbf{ki} &&+ d_1c_2 \mathbf{kj} &&+ d_1d_2 \mathbf k^2 \end{alignat}</math> Now the basis elements can be multiplied using the rules given above to get:<ref name="SeeHazewinkel" /> <math display=block>\begin{alignat}{4} &a_1a_2 &&- b_1b_2 &&- c_1c_2 &&- d_1d_2\\ {}+{} (&a_1b_2 &&+ b_1a_2 &&+ c_1d_2 &&- d_1c_2) \mathbf i\\ {}+{} (&a_1c_2 &&- b_1d_2 &&+ c_1a_2 &&+ d_1b_2) \mathbf j\\ {}+{} (&a_1d_2 &&+ b_1c_2 &&- c_1b_2 &&+ d_1a_2) \mathbf k \end{alignat}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)