Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Radon transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Reconstruction approaches== The process of ''reconstruction'' produces the image (or function <math>f</math> in the previous section) from its projection data. ''Reconstruction'' is an [[inverse problem]]. ===Radon inversion formula=== In the two-dimensional case, the most commonly used analytical formula to recover <math>f</math> from its Radon transform is the ''Filtered Back-projection Formula'' or ''Radon Inversion Formula{{sfn|Candès|2016b}}'': <math display="block">f(\mathbf{x})=\int^\pi_0 (\mathcal{R}f(\cdot,\theta)*h)(\left\langle\mathbf{x},\mathbf{n}_\theta \right\rangle) \, d\theta</math>where <math>h</math> is such that <math>\hat{h}(k)=|k|</math>.{{sfn|Candès|2016b}} The convolution kernel <math>h</math> is referred to as Ramp filter in some literature. ===Ill-posedness=== Intuitively, in the ''filtered back-projection'' formula, by analogy with differentiation, for which <math display="inline">\left(\widehat{\frac{d}{dx}f}\right)\!(k)=ik\widehat{f}(k)</math>, we see that the filter performs an operation similar to a derivative. Roughly speaking, then, the filter makes objects ''more'' singular. A quantitive statement of the ill-posedness of Radon inversion goes as follows:<math display="block">\widehat{\mathcal{R}^*\mathcal{R} [g]}(\mathbf{k}) = \frac{1}{\|\mathbf{k}\|} \hat{g}(\mathbf{k})</math> where <math>\mathcal{R}^*</math> is the previously defined adjoint to the Radon transform. Thus for <math>g(\mathbf{x}) = e^{i \left\langle\mathbf{k}_0,\mathbf{x}\right\rangle}</math>, we have: <math display="block"> \mathcal{R}^*\mathcal{R}[g](\mathbf{x}) = \frac{1}{\|\mathbf{k_0}\|} e^{i \left\langle\mathbf{k}_0,\mathbf{x}\right\rangle}</math> The complex exponential <math>e^{i \left\langle\mathbf{k}_0,\mathbf{x}\right\rangle}</math> is thus an eigenfunction of <math>\mathcal{R}^*\mathcal{R}</math> with eigenvalue <math display="inline">\frac{1}{\|\mathbf{k}_0\|}</math>. Thus the singular values of <math>\mathcal{R}</math> are <math display="inline">\frac{1}\sqrt{\|\mathbf{k}\|}</math>. Since these singular values tend to <math>0</math>, <math>\mathcal{R}^{-1}</math> is unbounded.{{sfn|Candès|2016b}} ===Iterative reconstruction methods=== {{main|Iterative reconstruction}} Compared with the ''Filtered Back-projection'' method, iterative reconstruction costs large computation time, limiting its practical use. However, due to the ill-posedness of Radon Inversion, the ''Filtered Back-projection'' method may be infeasible in the presence of discontinuity or noise. Iterative reconstruction methods (''e.g.'' [[SAMV (algorithm)|iterative Sparse Asymptotic Minimum Variance]]<ref name=AbeidaZhang>{{cite journal | last1=Abeida | first1=Habti | last2=Zhang | first2=Qilin | last3=Li | first3=Jian | last4=Merabtine | first4=Nadjim | title=Iterative Sparse Asymptotic Minimum Variance Based Approaches for Array Processing | journal=IEEE Transactions on Signal Processing | publisher=IEEE | volume=61 | issue=4 | year=2013 | issn=1053-587X | doi=10.1109/tsp.2012.2231676 | pages=933–944 | url=https://qilin-zhang.github.io/_pages/pdfs/SAMVpaper.pdf | bibcode=2013ITSP...61..933A | arxiv=1802.03070 | s2cid=16276001 }}</ref>) could provide metal artefact reduction, noise and dose reduction for the reconstructed result that attract much research interest around the world.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)