Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Random forest
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===ExtraTrees=== Adding one further step of randomization yields ''extremely randomized trees'', or ExtraTrees. As with ordinary random forests, they are an ensemble of individual trees, but there are two main differences: (1) each tree is trained using the whole learning sample (rather than a bootstrap sample), and (2) the top-down splitting is randomized: for each feature under consideration, a number of ''random'' cut-points are selected, instead of computing the locally ''optimal'' cut-point (based on, e.g., [[information gain]] or the [[Gini impurity]]). The values are chosen from a uniform distribution within the feature's empirical range (in the tree's training set). Then, of all the randomly chosen splits, the split that yields the highest score is chosen to split the node. Similar to ordinary random forests, the number of randomly selected features to be considered at each node can be specified. Default values for this parameter are <math>\sqrt{p}</math> for classification and <math>p</math> for regression, where <math>p</math> is the number of features in the model.<ref>{{Cite journal | doi = 10.1007/s10994-006-6226-1| title = Extremely randomized trees| journal = Machine Learning| volume = 63| pages = 3β42| year = 2006| vauthors = Geurts P, Ernst D, Wehenkel L | url = http://orbi.ulg.ac.be/bitstream/2268/9357/1/geurts-mlj-advance.pdf| doi-access = free}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)