Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rank–nullity theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Second proof=== Let <math>\mathbf{A}</math> be an <math>m\times n</math> matrix with <math>r</math> [[linearly independent]] columns (i.e. <math>\operatorname{Rank}(\mathbf{A}) = r</math>). We will show that: {{ordered list|type=lower-roman |1= There exists a set of <math>n - r</math> linearly independent solutions to the homogeneous system <math>\mathbf{Ax} = \mathbf{0}</math>. |2= That every other solution is a linear combination of these <math>n-r</math> solutions. }} To do this, we will produce an <math>n \times (n-r)</math> matrix <math>\mathbf{X}</math> whose columns form a [[basis (linear algebra)|basis]] of the null space of <math>\mathbf{A}</math>. Without loss of generality, assume that the first <math>r</math> columns of <math>\mathbf{A}</math> are linearly independent. So, we can write <math display="block">\mathbf{A} = \begin{pmatrix} \mathbf{A}_1 & \mathbf{A}_2\end{pmatrix} ,</math> where *<math>\mathbf{A}_1</math> is an <math>m \times r</math> matrix with <math>r</math> linearly independent column vectors, and *<math>\mathbf{A}_2</math> is an <math>m\times (n-r)</math> matrix such that each of its <math>n-r</math> columns is linear combinations of the columns of <math>\mathbf{A}_1</math>. This means that <math>\mathbf{A}_2 = \mathbf{A}_1\mathbf{B}</math> for some <math>r \times (n-r)</math> matrix <math>\mathbf{B}</math> (see [[rank factorization]]) and, hence, <math display="block">\mathbf{A} = \begin{pmatrix} \mathbf{A}_1 & \mathbf{A}_1\mathbf{B}\end{pmatrix} .</math> Let <math display="block">\mathbf{X} = \begin{pmatrix} -\mathbf{B} \\ \mathbf{I}_{n-r} \end{pmatrix} , </math> where <math>\mathbf{I}_{n-r}</math> is the <math>(n-r)\times (n-r)</math> [[identity matrix]]. So, <math>\mathbf{X}</math> is an <math>n \times (n-r)</math> matrix such that <math display="block"> \mathbf{A}\mathbf{X} = \begin{pmatrix}\mathbf{A}_1 & \mathbf{A}_1\mathbf{B} \end{pmatrix}\begin{pmatrix} -\mathbf{B} \\ \mathbf{I}_{n-r} \end{pmatrix} = -\mathbf{A}_1\mathbf{B} + \mathbf{A}_1\mathbf{B} = \mathbf{0}_{m \times (n-r)}. </math> Therefore, each of the <math>n-r</math> columns of <math>\mathbf{X}</math> are particular solutions of <math>\mathbf{Ax} = {0}_{{F}^{m}}</math>. Furthermore, the <math>n-r</math> columns of <math>\mathbf{X}</math> are [[linearly independent]] because <math>\mathbf{Xu} = \mathbf{0}_{{F}^{n}}</math> will imply <math>\mathbf{u} = \mathbf{0}_{{F}^{n-r}}</math> for <math>\mathbf{u} \in {F}^{n-r}</math>: <math display="block"> \mathbf{X}\mathbf{u} = \mathbf{0}_{{F}^{n}} \implies \begin{pmatrix} -\mathbf{B} \\ \mathbf{I}_{n-r} \end{pmatrix}\mathbf{u} = \mathbf{0}_{{F}^{n}} \implies \begin{pmatrix} -\mathbf{B}\mathbf{u} \\ \mathbf{u} \end{pmatrix} = \begin{pmatrix} \mathbf{0}_{{F}^{r}} \\ \mathbf{0}_{{F}^{n-r}} \end{pmatrix} \implies \mathbf{u} = \mathbf{0}_{{F}^{n-r}}.</math> Therefore, the column vectors of <math>\mathbf{X}</math> constitute a set of <math>n-r</math> linearly independent solutions for <math>\mathbf{Ax} = \mathbf{0}_{\mathbb{F}^{m}}</math>. We next prove that ''any'' solution of <math>\mathbf{Ax} = \mathbf{0}_{{F}^{m}}</math> must be a [[linear combination]] of the columns of <math>\mathbf{X}</math>. For this, let <math display="block">\mathbf{u} = \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix} \in {F}^{n}</math> be any vector such that <math>\mathbf{Au} = \mathbf{0}_{{F}^{m}}</math>. Since the columns of <math>\mathbf{A}_1</math> are linearly independent, <math>\mathbf{A}_1\mathbf{x} = \mathbf{0}_{{F}^{m}}</math> implies <math>\mathbf{x} = \mathbf{0}_{{F}^{r}}</math>. Therefore, <math display="block">\begin{array}{rcl} \mathbf{A}\mathbf{u} & = & \mathbf{0}_{{F}^{m}} \\ \implies \begin{pmatrix}\mathbf{A}_1 & \mathbf{A}_1\mathbf{B}\end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix} & = & \mathbf{A}_1\mathbf{u}_1 + \mathbf{A}_1\mathbf{B}\mathbf{u}_2 & = & \mathbf{A}_1(\mathbf{u}_1 + \mathbf{B}\mathbf{u}_2) & = & \mathbf{0}_{\mathbb{F}^{m}} \\ \implies \mathbf{u}_1 + \mathbf{B}\mathbf{u}_2 & = & \mathbf{0}_{{F}^{r}} \\ \implies \mathbf{u}_1 & = & -\mathbf{B}\mathbf{u}_2 \end{array}</math> <math display="block"> \implies \mathbf{u} = \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix} = \begin{pmatrix} -\mathbf{B} \\ \mathbf{I}_{n-r} \end{pmatrix}\mathbf{u}_2 = \mathbf{X}\mathbf{u}_2. </math> This proves that any vector <math>\mathbf{u}</math> that is a solution of <math>\mathbf{Ax} = \mathbf{0}</math> must be a linear combination of the <math>n-r</math> special solutions given by the columns of <math>\mathbf{X}</math>. And we have already seen that the columns of <math>\mathbf{X}</math> are linearly independent. Hence, the columns of <math>\mathbf{X}</math> constitute a basis for the [[null space]] of <math>\mathbf{A}</math>. Therefore, the [[kernel (matrix)|nullity]] of <math>\mathbf{A}</math> is <math>n - r</math>. Since <math>r</math> equals rank of <math>\mathbf{A}</math>, it follows that <math>\operatorname{Rank}(\mathbf{A}) + \operatorname{Nullity}(\mathbf{A}) = n</math>. This concludes our proof.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)