Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ratio test
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Proof == [[File:Ratio test proof.svg|thumb|300px|In this example, the ratio of adjacent terms in the blue sequence converges to L=1/2. We choose ''r'' = (L+1)/2 = 3/4. Then the blue sequence is dominated by the red sequence {{mvar|r<sup>k</sup>}} for all ''n'' β₯ 2. The red sequence converges, so the blue sequence does as well.]] Below is a proof of the validity of the generalized ratio test. Suppose that <math>r=\liminf_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|>1</math>. We also suppose that <math>(a_n)</math> has infinite non-zero members, otherwise the series is just a finite sum hence it converges. Then there exists some <math>\ell\in(1;r)</math> such that there exists a natural number <math>n_0\ge2</math> satisfying <math>a_{n_0}\ne0</math> and <math>\left|\frac{a_{n+1}}{a_n}\right|>\ell</math> for all <math>n\ge n_0</math>, because if no such <math>\ell</math> exists then there exists arbitrarily large <math>n</math> satisfying <math>\left|\frac{a_{n+1}}{a_n}\right|<\ell</math> for every <math>\ell\in(1;r)</math>, then we can find a subsequence <math>\left(a_{n_k}\right)_{k=1}^\infty</math> satisfying <math>\limsup_{n\to\infty}\left|\frac{a_{n_k+1}}{a_{n_k}} \right|\le\ell<r</math>, but this contradicts the fact that <math>r</math> is the [[limit inferior]] of <math>\left|\frac{a_{n+1}}{a_n}\right|</math> as <math>n\to\infty</math>, implying the existence of <math>\ell</math>. Then we notice that for <math>n\ge n_0+1</math>, <math>|a_n|> \ell|a_{n-1}|>\ell^2|a_{n-2}|>...>\ell^{n-n_0}\left|a_{n_0}\right|</math>. Notice that <math>\ell>1</math> so <math>\ell^n\to\infty</math> as <math>n\to\infty</math> and <math>\left|a_{n_0}\right|>0</math>, this implies <math>(a_n)</math> diverges so the series <math>\sum_{n=1}^\infty a_n</math> diverges by the [[n-th term test]].<br> Now suppose <math>R=\limsup_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|<1</math>. Similar to the above case, we may find a natural number <math>n_1</math> and a <math>c\in(R;1)</math> such that <math>|a_n|\le c^{n-n_1}\left|a_{n_1}\right|</math> for <math>n\ge n_1</math>. Then <math display="block">\sum_{n=1}^\infty |a_n|=\sum_{k=1}^{n_1-1}|a_k|+\sum_{n=n_1}^\infty |a_n|\le\sum_{k=1}^{n_1-1}|a_k|+\sum_{n=n_1}^\infty c^{n-n_1}|a_{n_1}|=\sum_{k=1}^{n_1-1}|a_k|+\left|a_{n_1}\right|\sum_{n=0}^\infty c^n.</math> The series <math>\sum_{n=0}^\infty c^n</math> is the [[geometric series]] with common ratio <math>c\in(0;1)</math>, hence <math>\sum_{n=0}^\infty c^n=\frac{1}{1-c}</math> which is finite. The sum <math>\sum_{k=1}^{n_1-1}|a_k|</math> is a finite sum and hence it is bounded, this implies the series <math>\sum_{n=1}^\infty |a_n|</math> converges by the [[monotone convergence theorem]] and the series <math>\sum_{n=1}^\infty a_n</math> converges by the absolute convergence test.<br> When the limit <math>\left|\frac{a_{n+1}}{a_n}\right|</math> exists and equals to <math>L</math> then <math>r=R=L</math>, this gives the original ratio test.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)