Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Relativistic wave equations
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Linear equations == {{further|Linear differential equation}} The following equations have solutions which satisfy the [[superposition principle]], that is, the wave functions are [[additive map|additive]]. Throughout, the standard conventions of [[tensor index notation]] and [[Feynman slash notation]] are used, including Greek indices which take the values 1, 2, 3 for the spatial components and 0 for the timelike component of the indexed quantities. The wave functions are denoted ''{{math|ψ}}'', and {{math|∂<sub>''μ''</sub>}} are the components of the [[four-gradient]] operator. In [[matrix (mathematics)|matrix]] equations, the [[Pauli matrices]] are denoted by {{math|''σ<sup>μ</sup>''}} in which {{math|1=''μ'' = 0, 1, 2, 3}}, where {{math|''σ''<sup>0</sup>}} is the {{math|2 × 2}} [[identity matrix]]: <math display="block">\sigma^0 = \begin{pmatrix} 1&0 \\ 0&1 \\ \end{pmatrix} </math> and the other matrices have their usual representations. The expression <math display="block">\sigma^\mu \partial_\mu \equiv \sigma^0 \partial_0 + \sigma^1 \partial_1 + \sigma^2 \partial_2 + \sigma^3 \partial_3 </math> is a {{math|2 × 2}} matrix [[Operator (mathematics)|operator]] which acts on 2-component spinor fields. The [[gamma matrices]] are denoted by {{math|''γ''<sup>''μ''</sup>}}, in which again {{math|''μ'' {{=}} 0, 1, 2, 3}}, and there are a number of representations to select from. The matrix {{math|''γ''<sup>0</sup>}} is ''not'' necessarily the {{math|4 × 4}} identity matrix. The expression <math display="block">i\hbar \gamma^\mu \partial_\mu + mc \equiv i\hbar(\gamma^0 \partial_0 + \gamma^1 \partial_1 + \gamma^2 \partial_2 + \gamma^3 \partial_3) + mc \begin{pmatrix}1&0&0&0\\ 0&1&0&0 \\ 0&0&1&0 \\ 0&0&0&1 \end{pmatrix} </math> is a {{math|4 × 4}} [[matrix (mathematics)|matrix]] [[Operator (mathematics)|operator]] which acts on 4-component [[spinor field]]s. Note that terms such as "{{math|''mc''}}" [[scalar multiplication|scalar multiply]] an [[identity matrix]] of the relevant [[Dimension (vector space)|dimension]], the common sizes are {{math|2 × 2}} or {{math|4 × 4}}, and are ''conventionally'' not written for simplicity. {| class="wikitable" |- ! scope="col" width="100px" | Particle [[spin quantum number]] ''s'' ! scope="col" width="200px" | Name ! scope="col" width="300px" | Equation ! scope="col" width="200px" | Typical particles the equation describes |-valign="top" | 0 | [[Klein–Gordon equation]] | <math>(\hbar \partial_{\mu} + imc)(\hbar \partial^{\mu} -imc)\psi = 0</math> | Massless or massive spin-0 particle (such as [[Higgs boson]]s). |-valign="top" |scope="row" rowspan="5"| 1/2 | [[Weyl equation]] | <math> \sigma^\mu\partial_\mu \psi=0</math> | Massless spin-1/2 particles. |-valign="top" | [[Dirac equation]] | <math>\left( i \hbar \partial\!\!\!/ - m c \right) \psi = 0 </math> | Massive spin-1/2 particles (such as electrons). |-valign="top" | [[Two-body Dirac equations]] | <math>[(\gamma_1)_\mu (p_1-\tilde{A}_1)^\mu+m_1 + \tilde{S}_1]\Psi=0,</math>{{br}} <math>[(\gamma_2)_\mu (p_2-\tilde{A}_2)^\mu+m_2 + \tilde{S}_2]\Psi=0.</math> | Massive spin-1/2 particles (such as electrons). |-valign="top" |[[Majorana equation]] | <math> i \hbar \partial\!\!\!/ \psi - m c \psi_c = 0</math> | Massive [[Majorana particle]]s. |-valign="top" |[[Breit equation]] |<math> i\hbar\frac{\partial \Psi}{\partial t} = \left(\sum_{i}\hat{H}_{D}(i) + \sum_{i>j}\frac{1}{r_{ij}} - \sum_{i>j}\hat{B}_{ij} \right) \Psi </math> | Two massive spin-1/2 particles (such as [[electron]]s) interacting electromagnetically to first order in perturbation theory. |-valign="top" |scope="row" rowspan="2"| 1 | [[Maxwell's equations]] (in [[Quantum electrodynamics#Equations of motion|QED]] using the [[Lorenz gauge]]) |<math>\partial_\mu\partial^\mu A^\nu = e \overline{\psi} \gamma^\nu \psi </math> | [[Photon]]s, massless spin-1 particles. |-valign="top" |[[Proca equation]] |<math>\partial_\mu(\partial^\mu A^\nu - \partial^\nu A^\mu)+\left(\frac{mc}{\hbar}\right)^2 A^\nu=0</math> | Massive spin-1 particle (such as [[W and Z bosons]]). |-valign="top" |3/2 |[[Rarita–Schwinger equation]] |<math> \epsilon^{\mu \nu \rho \sigma} \gamma^5 \gamma_\nu \partial_\rho \psi_\sigma + m\psi^\mu = 0</math> | Massive spin-3/2 particles. |-valign="top" |scope="row" rowspan="2"|''s'' |[[Bargmann–Wigner equations]] |<math>\begin{align} (-i\hbar \gamma^\mu \partial_\mu + mc)_{\alpha_1 \alpha_1'}\psi_{\alpha'_1 \alpha_2 \alpha_3 \cdots \alpha_{2s}} &= 0 \\ (-i\hbar \gamma^\mu \partial_\mu + mc)_{\alpha_2 \alpha_2'}\psi_{\alpha_1 \alpha'_2 \alpha_3 \cdots \alpha_{2s}} &= 0 \\ &\;\; \vdots \\ (-i\hbar \gamma^\mu \partial_\mu + mc)_{\alpha_{2s} \alpha'_{2s}}\psi_{\alpha_1 \alpha_2 \alpha_3 \cdots \alpha'_{2s}} &= 0 \end{align}</math>{{br}} where {{math|''ψ''}} is a rank-2''s'' 4-component [[spinor]]. |Free particles of arbitrary spin (bosons and fermions).<ref name="E.A. Jeffery 1978"/><ref> {{cite news |author = R.Clarkson, D.G.C. McKeon |year = 2003 |title = Quantum Field Theory |pages = 61–69 |url = http://www.apmaths.uwo.ca/people/QFTNotesAll.pdf |url-status = dead |archive-url = https://web.archive.org/web/20090530181029/http://www.apmaths.uwo.ca/people/QFTNotesAll.pdf |archive-date = 2009-05-30 }}</ref> |- |[[Joos–Weinberg equation]] | <math> [(i\hbar )^{2s}\gamma ^{\mu _{1}\mu _{2}\cdots \mu _{2s}}\partial _{\mu _{1}}\partial _{\mu _{2}}\cdots \partial _{\mu _{2s}}+(mc)^{2s}]\psi =0</math> |Free particles of arbitrary spin (bosons and fermions). |- |} === Linear gauge fields === The [[Duffin–Kemmer–Petiau algebra#Duffin–Kemmer–Petiau equation|Duffin–Kemmer–Petiau equation]] is an alternative equation for spin-0 and spin-1 particles: <math display="block">(i \hbar \beta^{a} \partial_a - m c) \psi = 0</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)