Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Resistor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Nonideal properties == Practical resistors have a series [[inductance]] and a small parallel [[capacitance]]; these specifications can be important in high-frequency applications. And while even an ideal resistor inherently has [[Johnson noise]], some resistors have worse [[Noise (electronics)|noise]] characteristics and so may be an issue for [[low-noise amplifier]]s or other [[Sensitivity (electronics)|sensitive]] electronics. In some precision applications, the [[temperature coefficient]] of the resistance may also be of concern. The unwanted inductance, excess noise, and temperature coefficient are mainly dependent on the technology used in manufacturing the resistor. They are not normally specified individually for a particular family of resistors manufactured using a particular technology.<ref>A family of resistors may also be characterized according to its ''critical resistance.'' Applying a constant voltage across resistors in that family below the critical resistance will exceed the maximum power rating first; resistances larger than the critical resistance fail first from exceeding the maximum voltage rating. See {{cite book |author=Middleton, Wendy |author2=Van Valkenburg, Mac E. |title=Reference data for engineers: radio, electronics, computer, and communications |edition=9 |publisher=Newnes |year=2002 |isbn=0-7506-7291-9 |pages=5β10}}</ref> A family of discrete resistors may also be characterized according to its form factor, that is, the size of the device and the position of its leads (or terminals). This is relevant in the practical manufacturing of circuits that may use them. Practical resistors are also specified as having a maximum [[Power (physics)|power]] rating which must exceed the anticipated power dissipation of that resistor in a particular circuit: this is mainly of concern in power electronics applications. Resistors with higher power ratings are physically larger and may require [[heat sink]]s. In a high-voltage circuit, attention must sometimes be paid to the rated maximum working voltage of the resistor. While there is no minimum working voltage for a given resistor, failure to account for a resistor's maximum rating may cause the resistor to incinerate when current is run through it.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)