Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Riesz representation theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Statement=== {{Math theorem |name = {{visible anchor|Riesz representation theorem}} |math_statement = Let <math>H</math> be a [[Hilbert space]] whose [[inner product]] <math>\left\langle x, y \right\rangle</math> is linear in its {{em|first}} argument and [[Antilinear map|antilinear]] in its second argument and let <math>\langle y \mid x \rangle := \langle x, y \rangle</math> be the corresponding physics notation. For every continuous linear functional <math>\varphi \in H^*,</math> there exists a unique vector <math>f_{\varphi} \in H,</math> called the {{em|{{visible anchor|Riesz representation|Riesz representative}} of <math>\varphi,</math>}}<!-- the term "Riesz representation of" seems to be more commonly used than "Riesz representative of" --> such that<ref>{{harvnb|Roman|2008|loc=p. 351 Theorem 13.32}}</ref> <math display=block>\varphi(x) = \left\langle x, f_{\varphi} \right\rangle = \left\langle f_\varphi \mid x \right\rangle \quad \text{ for all } x \in H.</math> Importantly for {{em|complex}} Hilbert spaces, <math>f_{\varphi}</math> is always located in the {{em|antilinear}} coordinate of the inner product.<ref name="ImportanceOfLocationOfRieszRep" group="note" /> Furthermore, the length of the representation vector is equal to the norm of the functional: <math display=block>\left\|f_\varphi\right\|_H = \|\varphi\|_{H^*},</math> and <math>f_{\varphi}</math> is the unique vector <math>f_{\varphi} \in \left(\ker \varphi\right)^{\bot}</math> with <math>\varphi\left(f_{\varphi}\right) = \|\varphi\|^2.</math> It is also the unique element of minimum norm in <math>C := \varphi^{-1}\left(\|\varphi\|^2\right)</math>; that is to say, <math>f_{\varphi}</math> is the unique element of <math>C</math> satisfying <math>\left\|f_{\varphi}\right\| = \inf_{c \in C} \|c\|.</math> Moreover, any non-zero <math>q \in (\ker \varphi)^{\bot}</math> can be written as <math>q = \left(\|q\|^2 /\, \overline{\varphi(q)}\right)\ f_{\varphi}.</math> }} {{Math theorem | name = Corollary | math_statement = The {{em|canonical map from <math>H</math> into its dual}} <math>H^*</math>{{sfn|Trèves|2006|pp=112–123}} is the [[Injective map|injective]] [[Antilinear map|{{em|anti}}linear operator]] [[isometry]]<ref group=note name="AntilinearIsometryDef" />{{sfn|Trèves|2006|pp=112–123}} <math display=block>\begin{alignat}{4} \Phi :\;&& H &&\;\to \;& H^* \\[0.3ex] && y &&\;\mapsto\;& \langle \,\cdot\,, y \rangle = \langle y | \,\cdot\, \rangle \\ \end{alignat}</math> The Riesz representation theorem states that this map is [[Surjective map|surjective]] (and thus [[Bijective map|bijective]]) when <math>H</math> is complete and that its inverse is the [[Bijective map|bijective]] [[Isometry|isometric]] antilinear isomorphism <math display=block>\begin{alignat}{4} \Phi^{-1} :\;&& H^* &&\;\to \;& H \\[0.3ex] && \varphi &&\;\mapsto\;& f_{\varphi} \\ \end{alignat}.</math> Consequently, {{em|every}} continuous linear functional on the Hilbert space <math>H</math> can be written uniquely in the form <math>\langle y\, | \,\cdot\, \rangle</math>{{sfn|Trèves|2006|pp=112–123}} where <math>\|\langle y\,| \cdot \rangle\|_{H^*} = \|y\|_H</math> for every <math>y \in H.</math> The assignment <math>y \mapsto \langle y, \cdot \rangle = \langle \cdot\,| \,y \rangle</math> can also be viewed as a bijective {{em|linear}} isometry <math>H \to \overline{H}^*</math> into the [[Antilinear map|anti-dual space]] of <math>H,</math>{{sfn|Trèves|2006|pp=112–123}} which is the [[complex conjugate vector space]] of the [[continuous dual space]] <math>H^*.</math> The inner products on <math>H</math> and <math>H^*</math> are related by <math display=block>\left\langle \Phi h, \Phi k \right\rangle_{H^*} = \overline{\langle h, k \rangle}_H = \langle k, h \rangle_H \quad \text{ for all } h, k \in H</math> and similarly, <math display=block>\left\langle \Phi^{-1} \varphi, \Phi^{-1} \psi \right\rangle_H = \overline{\langle \varphi, \psi \rangle}_{H^*} = \left\langle \psi, \varphi \right\rangle_{H^*} \quad \text{ for all } \varphi, \psi \in H^*.</math> The set <math>C := \varphi^{-1}\left(\|\varphi\|^2\right)</math> satisfies <math>C = f_{\varphi} + \ker \varphi</math> and <math>C - f_{\varphi} = \ker \varphi</math> so when <math>f_{\varphi} \neq 0</math> then <math>C</math> can be interpreted as being the [[affine hyperplane]]<ref group=note name="VectorSpaceStructureOnAffineHyperplanesInducedByDualSpace" /> that is parallel to the vector subspace <math>\ker \varphi</math> and contains <math>f_{\varphi}.</math> For <math>y \in H,</math> the physics notation for the functional <math>\Phi(y) \in H^*</math> is the bra <math>\langle y |,</math> where explicitly this means that <math>\langle y | := \Phi(y),</math> which complements the ket notation <math>| y \rangle</math> defined by <math>| y \rangle := y.</math> In the mathematical treatment of [[quantum mechanics]], the theorem can be seen as a justification for the popular [[bra–ket notation]]. The theorem says that, every bra <math>\langle\psi\,|</math> has a corresponding ket <math>|\,\psi\rangle,</math> and the latter is unique. }} Historically, the theorem is often attributed simultaneously to [[Frigyes Riesz|Riesz]] and [[Maurice René Fréchet|Fréchet]] in 1907 (see references). {{collapse top|title=Proof{{sfn|Rudin|1991|pp=307−309}}|left=true}} Let <math>\mathbb{F}</math> denote the underlying scalar field of <math>H.</math> {{em|Proof of norm formula:}} Fix <math>y \in H.</math> Define <math>\Lambda : H \to \mathbb{F}</math> by <math>\Lambda(z) := \langle \,y\, | \,z\, \rangle,</math> which is a linear functional on <math>H</math> since <math>z</math> is in the linear argument. By the [[Cauchy–Schwarz inequality]], <math display=block>|\Lambda(z)| = |\langle \,y\, | \,z\, \rangle| \leq \|y\| \|z\|</math> which shows that <math>\Lambda</math> is bounded (equivalently, [[Continuous linear functional|continuous]]) and that <math>\|\Lambda\| \leq \|y\|.</math> It remains to show that <math>\|y\| \leq \|\Lambda\|.</math> By using <math>y</math> in place of <math>z,</math> it follows that <math display=block>\|y\|^2 = \langle \,y\, | \,y\, \rangle = \Lambda y = |\Lambda(y)| \leq \|\Lambda\| \|y\|</math> (the equality <math>\Lambda y = |\Lambda(y)|</math> holds because <math>\Lambda y = \|y\|^2 \geq 0</math> is real and non-negative). Thus that <math>\|\Lambda\| = \|y\|.</math> <math>\blacksquare</math> The proof above did not use the fact that <math>H</math> is [[Complete metric space|complete]], which shows that the formula for the norm <math>\|\langle \,y\, | \,\cdot\, \rangle\|_{H^*} = \|y\|_H</math> holds more generally for all [[inner product space]]s. {{hr|1}} {{em|Proof that a Riesz representation of <math>\varphi</math> is unique:}} Suppose <math>f, g \in H</math> are such that <math>\varphi(z) = \langle \,f\, | \,z\, \rangle</math> and <math>\varphi(z) = \langle \,g\, | \,z\, \rangle</math> for all <math>z \in H.</math> Then <math display=block>\langle \,f - g\, | \,z\, \rangle = \langle \,f\, | \,z\, \rangle - \langle \,g\, | \,z\, \rangle = \varphi(z) - \varphi(z) = 0 \quad \text{ for all } z \in H</math> which shows that <math>\Lambda := \langle \,f - g\, | \,\cdot\, \rangle</math> is the constant <math>0</math> linear functional. Consequently <math>0 = \|\langle \,f - g\, | \,\cdot\, \rangle\| = \|f - g\|,</math> which implies that <math>f - g = 0.</math> <math>\blacksquare</math> {{hr|1}} {{em|Proof that a vector <math>f_{\varphi}</math> representing <math>\varphi</math> exists:}} Let <math>K := \ker \varphi := \{ m \in H : \varphi(m) = 0 \}.</math> If <math>K = H</math> (or equivalently, if <math>\varphi = 0</math>) then taking <math>f_{\varphi} := 0</math> completes the proof so assume that <math>K \neq H</math> and <math>\varphi \neq 0.</math> The continuity of <math>\varphi</math> implies that <math>K</math> is a closed subspace of <math>H</math> (because <math>K = \varphi^{-1}(\{ 0 \})</math> and <math>\{ 0 \}</math> is a closed subset of <math>\mathbb{F}</math>). Let <math display=block>K^{\bot} := \{ v \in H ~:~ \langle \,v\, | \,k\, \rangle = 0 ~ \text{ for all } k \in K\}</math> denote the [[orthogonal complement]] of <math>K</math> in <math>H.</math> Because <math>K</math> is closed and <math>H</math> is a Hilbert space,<ref group=note>Showing that there is a non-zero vector <math>v</math> in <math>K^{\bot}</math> relies on the continuity of <math>\phi</math> and the [[Cauchy completeness]] of <math>H.</math> This is the only place in the proof in which these properties are used.</ref> <math>H</math> can be written as the direct sum <math>H = K \oplus K^{\bot}</math><ref group=note>Technically, <math>H = K \oplus K^{\bot}</math> means that the addition map <math>K \times K^{\bot} \to H</math> defined by <math>(k, p) \mapsto k + p</math> is a surjective [[linear isomorphism]] and [[homeomorphism]]. See the article on [[complemented subspace]]s for more details.</ref> (a proof of this is given in the article on the [[Hilbert projection theorem]]). Because <math>K \neq H,</math> there exists some non-zero <math>p \in K^{\bot}.</math> For any <math>h \in H,</math> <math display=block>\varphi[(\varphi h) p - (\varphi p) h] ~=~ \varphi[(\varphi h) p] - \varphi[(\varphi p) h] ~=~ (\varphi h) \varphi p - (\varphi p) \varphi h = 0,</math> which shows that <math>(\varphi h) p - (\varphi p) h ~\in~ \ker \varphi = K,</math> where now <math>p \in K^{\bot}</math> implies <math display=block>0 = \langle \,p\, | \,(\varphi h) p - (\varphi p) h\, \rangle ~=~ \langle \,p\, | \,(\varphi h) p \, \rangle - \langle \,p\, | \,(\varphi p) h\, \rangle ~=~ (\varphi h) \langle \,p\, | \,p \, \rangle - (\varphi p) \langle \,p\, | \,h\, \rangle.</math> Solving for <math>\varphi h</math> shows that <math display=block>\varphi h = \frac{(\varphi p) \langle \,p\, | \,h\, \rangle}{\|p\|^2} = \left\langle \,\frac{\overline{\varphi p}}{\|p\|^2} p\, \Bigg| \,h\, \right\rangle \quad \text{ for every } h \in H,</math> which proves that the vector <math>f_{\varphi} := \frac{\overline{\varphi p}}{\|p\|^2} p</math> satisfies <math>\varphi h = \langle \,f_{\varphi}\, | \,h\, \rangle \text{ for every } h \in H.</math> Applying the norm formula that was proved above with <math>y := f_{\varphi}</math> shows that <math>\|\varphi\|_{H^*} = \left\|\left\langle \,f_{\varphi}\, | \,\cdot\, \right\rangle\right\|_{H^*} = \left\|f_{\varphi}\right\|_H.</math> Also, the vector <math>u := \frac{p}{\|p\|}</math> has norm <math>\|u\| = 1</math> and satisfies <math>f_{\varphi} := \overline{\varphi(u)} u.</math> <math>\blacksquare</math> {{hr|1}} It can now be deduced that <math>K^{\bot}</math> is <math>1</math>-dimensional when <math>\varphi \neq 0.</math> Let <math>q \in K^{\bot}</math> be any non-zero vector. Replacing <math>p</math> with <math>q</math> in the proof above shows that the vector <math>g := \frac{\overline{\varphi q}}{\|q\|^2} q</math> satisfies <math>\varphi(h) = \langle \,g\, | \,h\, \rangle</math> for every <math>h \in H.</math> The uniqueness of the (non-zero) vector <math>f_{\varphi}</math> representing <math>\varphi</math> implies that <math>f_{\varphi} = g,</math> which in turn implies that <math>\overline{\varphi q} \neq 0</math> and <math>q = \frac{\|q\|^2}{\overline{\varphi q}} f_{\varphi}.</math> Thus every vector in <math>K^{\bot}</math> is a scalar multiple of <math>f_{\varphi}.</math> <math>\blacksquare</math> The formulas for the inner products follow from the [[polarization identity]]. {{collapse bottom}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)