Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Right triangle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Characterizations== A triangle <math>\triangle ABC</math> with sides <math>a \le b < c</math>, [[semiperimeter]] <math display=inline>s = \tfrac12(a+b+c)</math>, [[area]] <math>T,</math> [[altitude (triangle)|altitude]] <math>h_c</math> opposite the longest side, [[Circumscribed circle|circumradius]] <math>R,</math> [[Incircle and excircles of a triangle#Relation to area of the triangle|inradius]] <math>r,</math> [[Incircle and excircles of a triangle#Relation to area of the triangle|exradii]] <math>r_a, r_b, r_c</math> tangent to <math>a,b,c</math> respectively, and [[median (geometry)|medians]] <math>m_a, m_b, m_c</math> is a right triangle [[if and only if]] any one of the statements in the following six categories is true. Each of them is thus also a property of any right triangle. ===Sides and semiperimeter=== * <math>a^2+b^2=c^2\quad (\text{Pythagorean theorem})</math> * <math>(s-a)(s-b) = s(s-c)</math> * <math>s=2R+r.</math><ref>{{Cite web |url=http://www.artofproblemsolving.com/Forum/viewtopic.php?f=46&t=411120 |title=Triangle right iff s = 2R + r, ''Art of problem solving'', 2011 |access-date=2012-01-02 |archive-date=2014-04-28 |archive-url=https://web.archive.org/web/20140428221212/http://www.artofproblemsolving.com/Forum/viewtopic.php?f=46&t=411120 |url-status=dead }}</ref> * <math>a^2+b^2+c^2=8R^2.</math><ref name=Andreescu/> ===Angles=== * <math>A</math> and <math>B</math> are [[complementary angles|complementary]].<ref>{{Cite web |url=http://www.ricksmath.com/right-triangles.html |title=Properties of Right Triangles |access-date=2012-02-15 |archive-date=2011-12-31 |archive-url=https://web.archive.org/web/20111231222001/http://www.ricksmath.com/right-triangles.html |url-status=dead }}</ref> * <math>\cos{A}\cos{B}\cos{C}=0.</math><ref name=Andreescu/><ref name="CTK">CTK Wiki Math, ''A Variant of the Pythagorean Theorem'', 2011, [http://www.cut-the-knot.org/wiki-math/index.php?n=Trigonometry.AVariantOfPythagoreanTheorem] {{Webarchive|url=https://web.archive.org/web/20130805051705/http://www.cut-the-knot.org/wiki-math/index.php?n=Trigonometry.AVariantOfPythagoreanTheorem|date=2013-08-05}}.</ref> * <math>\sin^2{A}+\sin^2{B}+\sin^2{C}=2.</math><ref name=Andreescu/><ref name=CTK/> * <math>\cos^2{A}+\cos^2{B}+\cos^2{C}=1.</math><ref name=CTK/> * <math>\sin{2A}=\sin{2B}=2\sin{A}\sin{B}.</math> ===Area=== * <math>T=\frac{ab}{2}</math> * <math>T=r_ar_b=rr_c</math> * <math>T=r(2R+r)</math> * <math>T=\frac{(2s-c)^2-c^2}{4}=s(s-c)</math> * <math>T=|PA| \cdot |PB|,</math> where <math>P</math> is the tangency point of the [[Incircle and excircles of a triangle|incircle]] at the longest side <math>AB.</math><ref>{{citation |last=Darvasi |first=Gyula |journal=The Mathematical Gazette |pages=72–76 |title=Converse of a Property of Right Triangles |volume=89 |number=514 |date=March 2005|doi=10.1017/S0025557200176806 |s2cid=125992270 |doi-access=free }}.</ref> ===Inradius and exradii=== * <math>r=s-c=(a+b-c)/2</math> * <math>r_a=s-b=(a-b+c)/2</math> * <math>r_b=s-a=(-a+b+c)/2</math> * <math>r_c=s=(a+b+c)/2</math> * <math>r_a+r_b+r_c+r=a+b+c</math> * <math>r_a^2+r_b^2+r_c^2+r^2=a^2+b^2+c^2</math> * <math>r=\frac{r_ar_b}{r_c}.</math><ref name=Bell>{{citation|last=Bell |first=Amy|journal=Forum Geometricorum|pages=335–342|title=Hansen's Right Triangle Theorem, Its Converse and a Generalization|url=http://forumgeom.fau.edu/FG2006volume6/FG200639.pdf |archive-url=https://web.archive.org/web/20080725014729/http://forumgeom.fau.edu/FG2006volume6/FG200639.pdf |archive-date=2008-07-25 |url-status=live|volume=6|year=2006}}</ref> ===Altitude and medians=== {{right_angle_altitude.svg}} * <math>h_c=\frac{ab}{c}</math> * <math>m_a^2+m_b^2+m_c^2=6R^2.</math><ref name=Crux/>{{rp|Prob. 954, p. 26}} * The length of one [[Median (geometry)|median]] is equal to the [[Circumscribed circle|circumradius]]. * The shortest [[Altitude (triangle)|altitude]] (the one from the vertex with the biggest angle) is the [[geometric mean]] of the [[line segment]]s it divides the opposite (longest) side into. This is the [[right triangle altitude theorem]]. ===Circumcircle and incircle=== * The triangle can be inscribed in a [[semicircle]], with one side coinciding with the entirety of the diameter ([[Thales' theorem]]). * The [[Circumscribed circle|circumcenter]] is the [[midpoint]] of the longest side. * The longest side is a [[diameter]] of the [[Circumscribed circle#Circumscribed circles of triangles|circumcircle]] <math>(c=2R).</math> * The circumcircle is [[tangent]] to the [[nine-point circle]].<ref name=Andreescu>Andreescu, Titu and Andrica, Dorian, "Complex Numbers from A to...Z", Birkhäuser, 2006, pp. 109–110.</ref> * The [[Altitude (triangle)#Orthocenter|orthocenter]] lies on the circumcircle.<ref name=Crux/> * The distance between the [[Incircle and excircles of a triangle|incenter]] and the orthocenter is equal to <math>\sqrt{2}r</math>.<ref name=Crux/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)