Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rotating reference frame
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Relation between positions in the two frames === To derive these fictitious forces, it's helpful to be able to convert between the coordinates <math>\left(x', y', z'\right)</math> of the rotating reference frame and the coordinates <math>(x, y, z)</math> of an [[inertial reference frame]] with the same origin.<ref group=note>So <math>x', y', z'</math> are functions of <math>x, y, z,</math> and time <math>t.</math> Similarly <math>x, y, z</math> are functions of <math>x', y', z',</math> and <math>t.</math> That these reference frames have the same origin means that for all <math>t,</math> <math>\left(x', y', z'\right) = (0, 0, 0)</math> if and only if <math>(x, y, z) = (0, 0, 0).</math></ref> If the rotation is about the <math>z</math> axis with a constant [[angular velocity]] <math>\Omega</math> (so <math>z' = z</math> and <math>\frac{\mathrm{d} \theta}{\mathrm{d} t} \equiv \Omega,</math> which implies <math>\theta(t) = \Omega t + \theta_0</math> for some constant <math>\theta_0</math> where <math>\theta(t)</math> denotes the angle in the <math>x-y</math>-plane formed at time <math>t</math> by <math>\left(x', y'\right)</math> and the <math>x</math>-axis), and if the two reference frames coincide at time <math>t = 0</math> (meaning <math>\left(x', y', z'\right) = (x, y, z)</math> when <math>t = 0,</math> so take <math>\theta_0 = 0</math> or some other integer multiple of <math>2\pi</math>), the transformation from rotating coordinates to inertial coordinates can be written <math display=block>x = x'\cos(\theta(t)) - y'\sin(\theta(t))</math> <math display=block>y = x'\sin(\theta(t)) + y'\cos(\theta(t))</math> whereas the reverse transformation is <math display=block>x' = x\cos(-\theta(t)) - y\sin(-\theta(t))</math> <math display=block>y' = x\sin( -\theta(t)) + y\cos(-\theta(t)) \ .</math> This result can be obtained from a [[rotation matrix]]. Introduce the unit vectors <math>\hat{\boldsymbol{\imath}},\ \hat{\boldsymbol{\jmath}},\ \hat{\boldsymbol{k}}</math> representing standard unit basis vectors in the rotating frame. The time-derivatives of these unit vectors are found next. Suppose the frames are aligned at <math>t = 0</math> and the <math>z</math>-axis is the axis of rotation. Then for a counterclockwise rotation through angle <math>\Omega t</math>: <math display=block>\hat{\boldsymbol{\imath}}(t) = (\cos\theta(t),\ \sin \theta(t))</math> where the <math>(x, y)</math> components are expressed in the stationary frame. Likewise, <math display=block>\hat{\boldsymbol{\jmath}}(t) = (-\sin \theta(t),\ \cos \theta(t)) \ .</math> Thus the time derivative of these vectors, which rotate without changing magnitude, is <math display=block>\frac{\mathrm{d}}{\mathrm{d}t}\hat{\boldsymbol{\imath}}(t) = \Omega (-\sin \theta(t), \ \cos \theta(t))= \Omega \hat{\boldsymbol{\jmath}} \ ; </math> <math display=block>\frac{\mathrm{d}}{\mathrm{d}t}\hat{\boldsymbol{\jmath}}(t) = \Omega (-\cos \theta(t), \ -\sin \theta(t))= - \Omega \hat{\boldsymbol{\imath}} \ ,</math> where <math>\Omega \equiv \frac{\mathrm{d}}{\mathrm{d}t}\theta(t).</math> This result is the same as found using a [[vector cross product]] with the rotation vector <math>\boldsymbol{\Omega}</math> pointed along the z-axis of rotation <math>\boldsymbol{\Omega} = (0,\ 0,\ \Omega),</math> namely, <math display=block>\frac{\mathrm{d}}{\mathrm{d}t}\hat{\boldsymbol{u}} = \boldsymbol{\Omega \times}\hat{\boldsymbol{u}} \ , </math> where <math>\hat{\boldsymbol{u}}</math> is either <math>\hat{\boldsymbol{\imath}}</math> or <math>\hat{\boldsymbol{\jmath}}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)