Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rotation matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Relationship with complex plane=== The matrices of the shape <math display=block>\begin{bmatrix} x & -y \\ y & x \end{bmatrix}</math> form a [[ring (mathematics)|ring]], since their set is closed under addition and multiplication. Since <math display=block>\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^2 \ =\ \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \ = -I</math> (where <math display="inline">I</math> is the [[identity matrix]]), the map :<math>\begin{bmatrix} x & -y \\ y & x \end{bmatrix} = x\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + y \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mapsto x+iy</math> (where <math>i = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}</math>) is a [[ring isomorphism]] from this ring to the [[field (mathematics)|field]] of the [[complex number]]s {{tmath|\C}} (incidentally, this shows that this ring is a field). Under this isomorphism, the rotation matrices correspond to the [[circle]] of the [[unit complex number]]s, the complex numbers of modulus {{math|1}}. If one identifies <math>\mathbb R^2</math> with <math>\mathbb C</math> through the [[linear isomorphism]] <math>(a,b)\mapsto a+ib</math>, where <math>(a,b) \in \mathbb R^2</math> and <math>a+ib \in \mathbb C</math>, the action of a matrix <math>\begin{bmatrix} x & -y \\ y & x \end{bmatrix}</math> on a vector <math>(a,b)</math> corresponds to multiplication on the complex number <math>a+ib</math> by {{math|''x'' + ''iy''}}, and a rotation correspond to multiplication by a complex number of modulus {{math|1}}. As every 2-dimensional rotation matrix can be written :<math>\begin{pmatrix}\cos t&-\sin t\\ \sin t&\cos t\end{pmatrix},</math> the above correspondence associates such a matrix with the complex number :<math>e^{it} = \cos t + i\sin t = \cos t \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \sin t \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}</math> where the first equality is [[Euler's formula]], the matrix <math>I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}</math>corresponds to 1, and the matrix <math>\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}</math> corresponds to the [[imaginary unit]] <math display="inline">i</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)