Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Selection algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Parallel algorithms=== [[Parallel algorithm]]s for selection have been studied since 1975, when [[Leslie Valiant]] introduced the parallel comparison tree model for analyzing these algorithms, and proved that in this model selection using a linear number of comparisons requires <math>\Omega(\log\log n)</math> parallel steps, even for selecting the minimum or {{nowrap|maximum.{{r|valiant}}}} Researchers later found parallel algorithms for selection in <math>O(\log\log n)</math> steps, matching this {{nowrap|bound.{{r|akss|azapip}}}} In a randomized parallel comparison tree model it is possible to perform selection in a bounded number of steps and a linear number of {{nowrap|comparisons.{{r|reischuk}}}} On the more realistic [[parallel RAM]] model of computing, with exclusive read exclusive write memory access, selection can be performed in time <math>O(\log n)</math> with <math>O(n/\log n)</math> processors, which is optimal both in time and in the number of {{nowrap|processors.{{r|han}}}} With concurrent memory access, slightly faster parallel time is possible in {{nowrap|general,{{r|chr}}}} and the <math>\log n</math> term in the time bound can be replaced {{nowrap|by <math>\log k</math>.{{r|dieram}}}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)