Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Self-adjoint operator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Multiplication operator form of the spectral theorem === Firstly, let <math>(X, \Sigma, \mu)</math> be a [[Measure space#Important classes of measure spaces|Ο-finite measure space]] and <math>h : X \to \mathbb{R}</math> a [[measurable function]] on <math>X</math>. Then the operator <math>T_h : \operatorname{Dom}T_h \to L^2(X,\mu)</math>, defined by : <math>T_h \psi(x) = h(x)\psi(x), \quad \forall \psi \in \operatorname{Dom}T_h,</math> where : <math>\operatorname{Dom}T_h := \left\{\psi\in L^2(X,\mu) \;|\; h\psi \in L^2(X,\mu)\right\},</math> is called a '''[[multiplication operator]]'''.{{sfn|Hall|2013|p=207|ps=}} Any multiplication operator is a self-adjoint operator.{{sfn | Akhiezer | 1981 | p=152|ps=}} Secondly, two operators <math>A</math> and <math>B</math> with dense domains <math>\operatorname{Dom}A \subseteq H_1</math> and <math>\operatorname{Dom}B \subseteq H_2</math> in Hilbert spaces <math>H_1</math> and <math>H_2</math>, respectively, are '''unitarily equivalent''' if and only if there is a [[unitary transformation]] <math>U: H_1 \to H_2</math> such that:{{sfn | Akhiezer | 1981 | pp=115-116|ps=}} * <math>U\operatorname{Dom}A = \operatorname{Dom}B,</math> * <math> U A U^{-1} \xi = B \xi, \quad \forall \xi \in \operatorname{Dom}B. </math> If unitarily equivalent <math>A</math> and <math>B</math> are bounded, then <math>\|A\|_{H_1}=\|B\|_{H_2}</math>; if <math>A</math> is self-adjoint, then so is <math>B</math>. {{math theorem|Any self-adjoint operator <math>A</math> on a [[separable space|separable]] Hilbert space is unitarily equivalent to a multiplication operator, i.e.,{{sfn|Hall|2013|pp=127,207|ps=}} : <math>UAU^{-1}\psi(x) = h(x)\psi(x), \quad \forall \psi \in U\operatorname{Dom}(A)</math> }} The spectral theorem holds for both bounded and unbounded self-adjoint operators. Proof of the latter follows by reduction to the spectral theorem for [[unitary operator]]s.<ref>{{harvnb|Hall|2013}} Section 10.4</ref> We might note that if <math>T</math> is multiplication by <math>h</math>, then the spectrum of <math>T</math> is just the [[essential range]] of <math>h</math>. More complete versions of the spectral theorem exist as well that involve direct integrals and carry with it the notion of "generalized eigenvectors".{{sfn|Hall|2013|pp=144-147,206-207|ps=}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)