Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Seminorm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Inequalities involving seminorms=== If <math>p, q : X \to [0, \infty)</math> are seminorms on <math>X</math> then: <ul> <li><math>p \leq q</math> if and only if <math>q(x) \leq 1</math> implies <math>p(x) \leq 1.</math>{{sfn|Narici|Beckenstein|2011|pp=149β153}}</li> <li>If <math>a > 0</math> and <math>b > 0</math> are such that <math>p(x) < a</math> implies <math>q(x) \leq b,</math> then <math>a q(x) \leq b p(x)</math> for all <math>x \in X.</math> {{sfn|Wilansky|2013|pp=18-21}}</li> <li>Suppose <math>a</math> and <math>b</math> are positive real numbers and <math>q, p_1, \ldots, p_n</math> are seminorms on <math>X</math> such that for every <math>x \in X,</math> if <math>\max \{p_1(x), \ldots, p_n(x)\} < a</math> then <math>q(x) < b.</math> Then <math>a q \leq b \left(p_1 + \cdots + p_n\right).</math>{{sfn|Narici|Beckenstein|2011|p=149}}</li> <li>If <math>X</math> is a vector space over the reals and <math>f</math> is a non-zero linear functional on <math>X,</math> then <math>f \leq p</math> if and only if <math>\varnothing = f^{-1}(1) \cap \{x \in X : p(x) < 1\}.</math>{{sfn|Narici|Beckenstein|2011|pp=149β153}}</li> </ul> If <math>p</math> is a seminorm on <math>X</math> and <math>f</math> is a linear functional on <math>X</math> then: <ul> <li><math>|f| \leq p</math> on <math>X</math> if and only if <math>\operatorname{Re} f \leq p</math> on <math>X</math> (see footnote for proof).<ref>Obvious if <math>X</math> is a real vector space. For the non-trivial direction, assume that <math>\operatorname{Re} f \leq p</math> on <math>X</math> and let <math>x \in X.</math> Let <math>r \geq 0</math> and <math>t</math> be real numbers such that <math>f(x) = r e^{i t}.</math> Then <math>|f(x)|= r = f\left(e^{-it} x\right) = \operatorname{Re}\left(f\left(e^{-it} x\right)\right) \leq p\left(e^{-it} x\right) = p(x).</math></ref>{{sfn|Wilansky|2013|p=20}}</li> <li><math>f \leq p</math> on <math>X</math> if and only if <math>f^{-1}(1) \cap \{x \in X : p(x) < 1 = \varnothing\}.</math>{{sfn|Narici|Beckenstein|2011|pp=177-220}}{{sfn|Narici|Beckenstein|2011|pp=149β153}}</li> <li>If <math>a > 0</math> and <math>b > 0</math> are such that <math>p(x) < a</math> implies <math>f(x) \neq b,</math> then <math>a |f(x)| \leq b p(x)</math> for all <math>x \in X.</math>{{sfn|Wilansky|2013|pp=18-21}}</li> </ul>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)