Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Semisimple Lie algebra
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Example root space decomposition in sl<sub>n</sub>(C) == For <math>\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C}) </math> and the Cartan subalgebra <math>\mathfrak{h}</math> of diagonal matrices, define <math>\lambda_i \in \mathfrak{h}^*</math> by :<math>\lambda_i(d(a_1,\ldots, a_n)) = a_i</math>, where <math>d(a_1,\ldots, a_n)</math> denotes the diagonal matrix with <math>a_1,\ldots, a_n</math> on the diagonal. Then the decomposition is given by :<math>\mathfrak{g} = \mathfrak{h}\oplus \left( \bigoplus_{i \neq j} \mathfrak{g}_{\lambda_i - \lambda_j} \right)</math> where :<math>\mathfrak{g}_{\lambda_i - \lambda_j} = \text{Span}_\mathbb{C}(e_{ij})</math> for the vector <math>e_{ij}</math> in <math>\mathfrak{sl}_n(\mathbb{C})</math> with the standard (matrix) basis, meaning <math>e_{ij}</math> represents the basis vector in the <math>i</math>-th row and <math>j</math>-th column. This decomposition of <math>\mathfrak{g}</math> has an associated root system: :<math>\Phi = \{ \lambda_i - \lambda_j : i \neq j \}</math> === sl<sub>2</sub>(C) === For example, in <math>\mathfrak{sl}_2(\mathbb{C})</math> the decomposition is :<math>\mathfrak{sl}_2= \mathfrak{h}\oplus \mathfrak{g}_{\lambda_1 - \lambda_2}\oplus \mathfrak{g}_{\lambda_2 - \lambda_1}</math> and the associated root system is :<math>\Phi = \{\lambda_1 - \lambda_2, \lambda_2 - \lambda_1 \}</math> === sl<sub>3</sub>(C) === In <math>\mathfrak{sl}_3(\mathbb{C})</math> the decomposition is :<math>\mathfrak{sl}_3 = \mathfrak{h} \oplus \mathfrak{g}_{\lambda_1 - \lambda_2} \oplus \mathfrak{g}_{\lambda_1 - \lambda_3} \oplus \mathfrak{g}_{\lambda_2 - \lambda_3} \oplus \mathfrak{g}_{\lambda_2 - \lambda_1} \oplus \mathfrak{g}_{\lambda_3 - \lambda_1} \oplus \mathfrak{g}_{\lambda_3 - \lambda_2} </math> and the associated root system is given by :<math>\Phi = \{\pm(\lambda_1 - \lambda_2),\pm(\lambda_1 - \lambda_3),\pm(\lambda_2 - \lambda_3) \}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)