Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Simplicial complex
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Triangulation == {{Main|Triangulation (topology)}} A triangulation of a [[topological space]] <math>X</math> is a [[homeomorphism]] <math>t: |\mathcal{T}|\rightarrow X</math> where <math>\mathcal{T}</math> is a simplicial complex. Topological spaces do not necessarily admit a triangulation and if they do, it is never unique. [[Topological manifold]]s of dimension <math>d \leq 3</math> are always triangulable,<ref>{{citation |surname1=Edwin Moise |title=Geometric Topology in Dimensions 2 and 3 |publisher=Springer Verlag |publication-place=New York |date=1977 }}</ref><ref>{{cite web |title=Über den Begriff der Riemannschen Fläche |periodical= |publisher= |url=https://www.maths.ed.ac.uk/~v1ranick/papers/rado.pdf |first=Tibor |last=Rado |language=German }}</ref><ref>{{citation |surname1=John M. Lee |title=Introduction to Topological manifolds |publisher=Springer Verlag |publication-place=New York/Berlin/Heidelberg |at=p. 92 |isbn=0-387-98759-2 |date=2000 }}</ref> but not necessarily for <math>d > 3</math>.<ref>{{citation |author1=R. C. Kirby |author2=L. C. Siebenmann |periodical=Foundational Essays on Topological Manifolds, Smoothings, and Triangulations. (AM-88) |title=Annex B. On The Triangulation of Manifolds and the Hauptvermutung |publisher=Princeton University Press |at=pp. 299–306 |date=1977-12-31 }}</ref><ref>{{cite book |last1=Akbulut |first1=Selman |last2=McCarthy |first2=John D. |title=Casson's Invariant for Oriented Homology Three-Spheres {{!}} Princeton University Press |date=19 April 2016 |chapter=Chapter IV: Casson's Invariant for Oriented Homology 3-spheres |publisher=Princeton University Press |isbn=9780691636085 |language=en }}</ref> [[Differentiable manifold]]s of any dimension <math>d\ge 1</math> admit triangulations.<ref>{{citation |surname1=J. H. C. Whitehead |periodical=Annals of Mathematics |title=On C1-Complexes |volume=41 |issue=4 |at=pp. 809–824 |issn=0003-486X |date=1940 |doi=10.2307/1968861 |jstor=1968861 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)