Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Skew-symmetric matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Spectral theory === Since a matrix is [[matrix similarity|similar]] to its own transpose, they must have the same eigenvalues. It follows that the [[eigenvalue]]s of a skew-symmetric matrix always come in pairs Β±Ξ» (except in the odd-dimensional case where there is an additional unpaired 0 eigenvalue). From the [[spectral theorem]], for a real skew-symmetric matrix the nonzero eigenvalues are all pure [[imaginary number|imaginary]] and thus are of the form <math>\lambda_1 i, -\lambda_1 i, \lambda_2 i, -\lambda_2 i, \ldots</math> where each of the <math>\lambda_k</math> are real. Real skew-symmetric matrices are [[normal matrix|normal matrices]] (they commute with their [[adjoint matrix|adjoints]]) and are thus subject to the [[spectral theorem]], which states that any real skew-symmetric matrix can be diagonalized by a [[unitary matrix]]. Since the eigenvalues of a real skew-symmetric matrix are imaginary, it is not possible to diagonalize one by a real matrix. However, it is possible to bring every skew-symmetric matrix to a [[block matrix|block diagonal]] form by a [[special orthogonal matrix|special orthogonal transformation]].<ref>{{cite book |first1=S. |last1=Duplij |first2=A. |last2=Nikitin |first3=A. |last3=Galkin |first4=A. |last4=Sergyeyev |first5=O.F. |last5=Dayi |first6=R. |last6=Mohapatra |first7=L. |last7=Lipatov |first8=G. |last8=Dunne |first9=J. |last9=Feinberg |first10=H. |last10=Aoyama |first11=T. |last11=Voronov |chapter=Pfaffian |chapter-url=https://link.springer.com/referenceworkentry/10.1007/1-4020-4522-0_393 |doi=10.1007/1-4020-4522-0_393 |editor-last=Duplij |editor-first=S. |editor2-last=Siegel |editor2-first=W. |editor3-last=Bagger |editor3-first=J. |title=Concise Encyclopedia of Supersymmetry |publisher=Springer |date=2004 |pages=298 |isbn=978-1-4020-1338-6 }}</ref><ref>{{cite journal|doi=10.1063/1.1724294|first=Bruno|last=Zumino|title=Normal Forms of Complex Matrices|journal= Journal of Mathematical Physics |volume=3|number=5|pages=1055β7 |year=1962|bibcode=1962JMP.....3.1055Z}}</ref> Specifically, every <math>2n \times 2n</math> real skew-symmetric matrix can be written in the form <math>A = Q\Sigma Q^\textsf{T}</math> where <math>Q</math> is orthogonal and <math display="block">\Sigma = \begin{bmatrix} \begin{matrix}0 & \lambda_1 \\ -\lambda_1 & 0\end{matrix} & 0 & \cdots & 0 \\ 0 & \begin{matrix}0 & \lambda_2 \\ -\lambda_2 & 0\end{matrix} & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \begin{matrix}0 & \lambda_r\\ -\lambda_r & 0\end{matrix} \\ & & & & \begin{matrix}0 \\ & \ddots \\ & & 0 \end{matrix} \end{bmatrix}</math> for real positive-definite <math>\lambda_k</math>. The nonzero eigenvalues of this matrix are Β±Ξ»<sub>''k''</sub> ''i''. In the odd-dimensional case Ξ£ always has at least one row and column of zeros. More generally, every complex skew-symmetric matrix can be written in the form <math>A = U \Sigma U^{\mathrm T}</math> where <math>U</math> is unitary and <math>\Sigma</math> has the block-diagonal form given above with <math>\lambda_k</math> still real positive-definite. This is an example of the Youla decomposition of a complex square matrix.<ref>{{cite journal|doi=10.4153/CJM-1961-059-8|first=D. C. |last=Youla|title=A normal form for a matrix under the unitary congruence group|journal=Can. J. Math. |volume=13|pages=694β704 |year=1961|doi-access=free}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)