Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Solid modeling
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Cell decomposition=== This scheme follows from the combinatoric (algebraic topological) descriptions of solids detailed above. A solid can be represented by its decomposition into several cells. Spatial occupancy enumeration schemes are a particular case of cell decompositions where all the cells are cubical and lie in a regular grid. Cell decompositions provide convenient ways for computing certain [[topological properties]] of solids such as its [[Connected space|connectedness]] (number of pieces) and [[Genus (mathematics)|genus]] (number of holes). Cell decompositions in the form of triangulations are the representations used in 3D [[finite elements]] for the numerical solution of partial differential equations. Other cell decompositions such as a Whitney regular [[Topologically stratified space|stratification]] or Morse decompositions may be used for applications in robot motion planning.<ref name = "Complexity_planning">{{cite book |url=http://mitpress.mit.edu/catalog/item/default.asp?tid=4749&ttype=2 |title= The Complexity of Robot Motion Planning|author= Canny, John F. |year= 1987 |publisher= MIT press, ACM doctoral dissertation award |access-date=20 April 2010}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)