Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spectral theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Resolvent operator== {{Main|Resolvent formalism}} {{See also|Green's function|Dirac delta function}} Using spectral theory, the resolvent operator ''R'': :<math>R = (\lambda I - L)^{-1},\, </math> can be evaluated in terms of the eigenfunctions and eigenvalues of ''L'', and the Green's function corresponding to ''L'' can be found. Applying ''R'' to some arbitrary function in the space, say <math>\varphi</math>, :<math>R |\varphi \rangle = (\lambda I - L)^{-1} |\varphi \rangle = \sum_{i=1}^n \frac{1}{\lambda- \lambda_i} |e_i \rangle \langle f_i | \varphi \rangle. </math> This function has [[Pole (complex analysis)|poles]] in the complex ''Ξ»''-plane at each eigenvalue of ''L''. Thus, using the [[calculus of residues]]: :<math>\frac{1}{2\pi i } \oint_C R |\varphi \rangle d \lambda = -\sum_{i=1}^n |e_i \rangle \langle f_i | \varphi \rangle = -|\varphi \rangle,</math> where the [[line integral]] is over a contour ''C'' that includes all the eigenvalues of ''L''. Suppose our functions are defined over some coordinates {''x<sub>j</sub>''}, that is: :<math>\langle x, \varphi \rangle = \varphi (x_1, x_2, ...). </math> Introducing the notation :<math> \langle x , y \rangle = \delta (x-y), </math> where ''Ξ΄(x β y)'' = ''Ξ΄(x<sub>1</sub> β y<sub>1</sub>, x<sub>2</sub> β y<sub>2</sub>, x<sub>3</sub> β y<sub>3</sub>, ...)'' is the [[Dirac delta function]],<ref name=Dirac3>{{cite book |url=https://books.google.com/books?id=XehUpGiM6FIC&pg=PA60 |page=60 ''ff'' |author=PAM Dirac |title=''op. cit'' |year=1981 |publisher=Clarendon Press |isbn=0-19-852011-5}}</ref> we can write :<math>\langle x, \varphi \rangle = \int \langle x , y \rangle \langle y, \varphi \rangle dy. </math> Then: :<math>\begin{align} \left\langle x, \frac{1}{2\pi i } \oint_C \frac{\varphi}{\lambda I - L} d \lambda\right\rangle &= \frac{1}{2\pi i }\oint_C d \lambda \left \langle x, \frac{\varphi}{\lambda I - L} \right \rangle\\ &= \frac{1}{2\pi i } \oint_C d \lambda \int dy \left \langle x, \frac{y}{\lambda I - L} \right \rangle \langle y, \varphi \rangle \end{align}</math> The function ''G(x, y; Ξ»)'' defined by: :<math>\begin{align} G(x, y; \lambda) &= \left \langle x, \frac{y}{\lambda I - L} \right \rangle \\ &= \sum_{i=1}^n \sum_{j=1}^n \langle x, e_i \rangle \left \langle f_i, \frac{e_j}{\lambda I - L} \right \rangle \langle f_j , y\rangle \\ &= \sum_{i=1}^n \frac{\langle x, e_i \rangle \langle f_i , y\rangle }{\lambda - \lambda_i} \\ &= \sum_{i=1}^n \frac{e_i (x) f_i^*(y) }{\lambda - \lambda_i}, \end{align}</math> is called the ''[[Green's function]]'' for operator ''L'', and satisfies:<ref name=Friedman3>{{cite book |title=''op. cit'' |page=214, Eq. 2.14 |author=Bernard Friedman |year=1956 |publisher=Dover Publications |isbn=0-486-66444-9 |url=https://books.google.com/books?id=gnQeAQAAIAAJ&q=intitle:applied+intitle:mathematics+inauthor:Friedman }}</ref> :<math>\frac{1}{2\pi i }\oint_C G(x,y;\lambda) \, d \lambda = -\sum_{i=1}^n \langle x, e_i \rangle \langle f_i , y\rangle = -\langle x, y\rangle = -\delta (x-y). </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)