Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
State-space representation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Transfer function === The "[[transfer function]]" of a continuous time-invariant linear state-space model can be derived in the following way: First, taking the [[Laplace transform]] of <math display="block">\dot{\mathbf{x}}(t) = \mathbf{A} \mathbf{x}(t) + \mathbf{B} \mathbf{u}(t)</math> yields <math display="block">s\mathbf{X}(s)-\mathbf{x}(0) = \mathbf{A} \mathbf{X}(s) + \mathbf{B} \mathbf{U}(s). </math> Next, we simplify for <math>\mathbf{X}(s)</math>, giving <math display="block">(s\mathbf{I} - \mathbf{A})\mathbf{X}(s) =\mathbf{x}(0)+ \mathbf{B}\mathbf{U}(s) </math> and thus <math display="block">\mathbf{X}(s) =(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{x}(0)+ (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}\mathbf{U}(s). </math> Substituting for <math>\mathbf{X}(s)</math> in the output equation <math display="block">\mathbf{Y}(s) = \mathbf{C}\mathbf{X}(s) + \mathbf{D}\mathbf{U}(s),</math> giving <math display="block">\mathbf{Y}(s) = \mathbf{C}((s\mathbf{I} - \mathbf{A})^{-1}\mathbf{x}(0)+ (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}\mathbf{U}(s)) + \mathbf{D}\mathbf{U}(s). </math> Assuming zero initial conditions <math>\mathbf{x}(0) =\mathbf{0} </math> and a [[Single-input single-output system|single-input single-output (SISO) system]], the [[transfer function]] is defined as the ratio of output and input <math>G(s)=Y(s)/U(s)</math>. For a [[MIMO|multiple-input multiple-output (MIMO) system]], however, this ratio is not defined. Therefore, assuming zero initial conditions, the [[transfer function matrix]] is derived from <math display="block">\mathbf{Y}(s) = \mathbf{G}(s) \mathbf{U}(s) </math> using the method of equating the coefficients which yields <math display="block">\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D} . </math> Consequently, <math>\mathbf{G}(s)</math> is a matrix with the dimension <math>q \times p</math> which contains transfer functions for each input output combination. Due to the simplicity of this matrix notation, the state-space representation is commonly used for multiple-input, multiple-output systems. The [[Rosenbrock system matrix]] provides a bridge between the state-space representation and its [[transfer function]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)