Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stop codon
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Genomic distribution === Distribution of stop codons within the genome of an organism is non-random and can correlate with [[GC-content]].<ref>{{Cite journal|title=Stop codons in bacteria are not selectively equivalent|doi=10.1186/1745-6150-7-30|journal=Biology Direct|pmid=22974057|pmc=3549826|year=2012|volume=7|pages=30|vauthors=Povolotskaya IS, Kondrashov FA, Ledda A, Vlasov PK |doi-access=free }}</ref><ref name="Comprehensive Analysis of Stop Codo">{{cite journal |pages=775โ806 |doi=10.1074/jbc.M114.606632 |title=Comprehensive Analysis of Stop Codon Usage in Bacteria and Its Correlation with Release Factor Abundance|year=2014 |last1=Korkmaz|first1=Gรผrkan |last2=Holm |first2=Mikael |last3=Wiens|first3=Tobias |last4=Sanyal|first4=Suparna |journal=The Journal of Biological Chemistry |volume=289 |issue=44 |pmid=25217634 |pmc=4215218|doi-access=free }}</ref> For example, the ''E. coli'' K-12 genome contains 2705 TAA (63%), 1257 TGA (29%), and 326 TAG (8%) stop codons (GC content 50.8%).<ref>{{cite web |title=''Escherichia coli'' str. K-12 substr. MG1655, complete genome [Genbank Accession Number: U00096] |publisher=NCBI |work=GenBank |url=https://www.ncbi.nlm.nih.gov/nuccore/U00096 |access-date=2013-01-27}}</ref> Also the substrates for the stop codons release factor 1 or release factor 2 are strongly correlated to the abundance of stop codons.<ref name="Comprehensive Analysis of Stop Codo"/> Large scale study of bacteria with a broad range of GC-contents shows that while the frequency of occurrence of TAA is negatively correlated to the GC-content and the frequency of occurrence of TGA is positively correlated to the GC-content, the frequency of occurrence of the TAG stop codon, which is often the minimally used stop codon in a genome, is not influenced by the GC-content.<ref>{{cite journal |pages=6718โ25 |doi=10.1128/JB.00682-08 |title= Role of Premature Stop Codons in Bacterial Evolution |year=2008 |last1=Wong|first1=Tit-Yee |last2= Fernandes |first2=Sanjit |last3=Sankhon|first3=Naby |last4=Leong|first4=Patrick P | last5=Kuo|first5=Jimmy |last6=Liu|first6=Jong-Kang |journal=Journal of Bacteriology |volume=190 |issue=20 |pmid=18708500 |pmc=2566208}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)