Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sufficient statistic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Proof=== Due to Hogg and Craig.<ref name="HoggCraig">{{cite book | last = Hogg | first = Robert V. |author2=Craig, Allen T. | title = Introduction to Mathematical Statistics | publisher=Prentice Hall | year = 1995 | isbn=978-0-02-355722-4}}</ref> Let <math>X_1, X_2, \ldots, X_n</math>, denote a random sample from a distribution having the [[Probability density function|pdf]] ''f''(''x'', ''θ'') for ''ι'' < ''θ'' < ''δ''. Let ''Y''<sub>1</sub> = ''u''<sub>1</sub>(''X''<sub>1</sub>, ''X''<sub>2</sub>, ..., ''X''<sub>''n''</sub>) be a statistic whose pdf is ''g''<sub>1</sub>(''y''<sub>1</sub>; ''θ''). What we want to prove is that ''Y''<sub>1</sub> = ''u''<sub>1</sub>(''X''<sub>1</sub>, ''X''<sub>2</sub>, ..., ''X''<sub>''n''</sub>) is a sufficient statistic for ''θ'' if and only if, for some function ''H'', :<math> \prod_{i=1}^n f(x_i; \theta) = g_1 \left[u_1 (x_1, x_2, \dots, x_n); \theta \right] H(x_1, x_2, \dots, x_n). </math> First, suppose that :<math> \prod_{i=1}^n f(x_i; \theta) = g_1 \left[u_1 (x_1, x_2, \dots, x_n); \theta \right] H(x_1, x_2, \dots, x_n). </math> We shall make the transformation ''y''<sub>''i''</sub> = ''u''<sub>i</sub>(''x''<sub>1</sub>, ''x''<sub>2</sub>, ..., ''x''<sub>''n''</sub>), for ''i'' = 1, ..., ''n'', having inverse functions ''x''<sub>''i''</sub> = ''w''<sub>''i''</sub>(''y''<sub>1</sub>, ''y''<sub>2</sub>, ..., ''y''<sub>''n''</sub>), for ''i'' = 1, ..., ''n'', and [[Jacobian matrix and determinant|Jacobian]] <math> J = \left[w_i/y_j \right] </math>. Thus, :<math> \prod_{i=1}^n f \left[ w_i(y_1, y_2, \dots, y_n); \theta \right] = |J| g_1 (y_1; \theta) H \left[ w_1(y_1, y_2, \dots, y_n), \dots, w_n(y_1, y_2, \dots, y_n) \right]. </math> The left-hand member is the joint pdf ''g''(''y''<sub>1</sub>, ''y''<sub>2</sub>, ..., ''y''<sub>''n''</sub>; θ) of ''Y''<sub>1</sub> = ''u''<sub>1</sub>(''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>), ..., ''Y''<sub>''n''</sub> = ''u''<sub>''n''</sub>(''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>). In the right-hand member, <math>g_1(y_1;\theta)</math> is the pdf of <math>Y_1</math>, so that <math>H[ w_1, \dots , w_n] |J|</math> is the quotient of <math>g(y_1,\dots,y_n;\theta)</math> and <math>g_1(y_1;\theta)</math>; that is, it is the conditional pdf <math>h(y_2, \dots, y_n \mid y_1; \theta)</math> of <math>Y_2,\dots,Y_n</math> given <math>Y_1=y_1</math>. But <math>H(x_1,x_2,\dots,x_n)</math>, and thus <math>H\left[w_1(y_1,\dots,y_n), \dots, w_n(y_1, \dots, y_n))\right]</math>, was given not to depend upon <math>\theta</math>. Since <math>\theta</math> was not introduced in the transformation and accordingly not in the Jacobian <math>J</math>, it follows that <math>h(y_2, \dots, y_n \mid y_1; \theta)</math> does not depend upon <math>\theta</math> and that <math>Y_1</math> is a sufficient statistics for <math>\theta</math>. The converse is proven by taking: :<math>g(y_1,\dots,y_n;\theta)=g_1(y_1; \theta) h(y_2, \dots, y_n \mid y_1),</math> where <math>h(y_2, \dots, y_n \mid y_1)</math> does not depend upon <math>\theta</math> because <math>Y_2 ... Y_n</math> depend only upon <math>X_1 ... X_n</math>, which are independent on <math>\Theta</math> when conditioned by <math>Y_1</math>, a sufficient statistics by hypothesis. Now divide both members by the absolute value of the non-vanishing Jacobian <math>J</math>, and replace <math>y_1, \dots, y_n</math> by the functions <math>u_1(x_1, \dots, x_n), \dots, u_n(x_1,\dots, x_n)</math> in <math>x_1,\dots, x_n</math>. This yields :<math>\frac{g\left[ u_1(x_1, \dots, x_n), \dots, u_n(x_1, \dots, x_n); \theta \right]}{|J^*|}=g_1\left[u_1(x_1,\dots,x_n); \theta\right] \frac{h(u_2, \dots, u_n \mid u_1)}{|J^*|}</math> where <math>J^*</math> is the Jacobian with <math>y_1,\dots,y_n</math> replaced by their value in terms <math>x_1, \dots, x_n</math>. The left-hand member is necessarily the joint pdf <math>f(x_1;\theta)\cdots f(x_n;\theta)</math> of <math>X_1,\dots,X_n</math>. Since <math>h(y_2,\dots,y_n\mid y_1)</math>, and thus <math>h(u_2,\dots,u_n\mid u_1)</math>, does not depend upon <math>\theta</math>, then :<math>H(x_1,\dots,x_n)=\frac{h(u_2,\dots,u_n\mid u_1)}{|J^*|}</math> is a function that does not depend upon <math>\theta</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)