Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Taylor's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Example === [[File:Expanimation.gif|thumb|400px|right|Approximation of <math display="inline">e^x</math> (blue) by its Taylor polynomials <math>P_k</math> of order <math display="inline">k=1,\ldots,7</math> centered at <math display="inline">x=0</math> (red).]] Suppose that we wish to find the approximate value of the function <math display="inline">f(x)=e^x</math> on the interval <math display="inline">[-1,1]</math> while ensuring that the error in the approximation is no more than 10<sup>β5</sup>. In this example we pretend that we only know the following properties of the exponential function: {{NumBlk|:|<math>e^0=1, \qquad \frac{d}{dx} e^x = e^x, \qquad e^x>0, \qquad x\in\R.</math>|{{EquationRef|β }}}} From these properties it follows that <math display="inline">f^{(k)}(x)=e^x</math> for all <math display="inline">k</math>, and in particular, <math display="inline">f^{(k)}(0)=1</math>. Hence the ''<math display="inline">k</math>''-th order Taylor polynomial of <math display="inline">f</math> at <math display="inline">0</math> and its remainder term in the Lagrange form are given by <math display="block"> P_k(x) = 1+x+\frac{x^2}{2!}+\cdots+\frac{x^k}{k!}, \qquad R_k(x)=\frac{e^\xi}{(k+1)!}x^{k+1},</math> where <math display="inline">\xi</math> is some number between 0 and ''x''. Since ''e''<sup>''x''</sup> is increasing by ({{EquationNote|β }}), we can simply use <math display="inline">e^x \leq 1</math> for <math display="inline">x \in [-1,0]</math> to estimate the remainder on the subinterval <math>[-1,0]</math>. To obtain an upper bound for the remainder on <math>[0,1]</math>, we use the property <math display="inline">e^\xi <e^x</math> for <math display="inline">0<\xi<x</math> to estimate <math display="block"> e^x = 1 + x + \frac{e^\xi}{2}x^2 < 1 + x + \frac{e^x}{2}x^2, \qquad 0 < x\leq 1 </math> using the second order Taylor expansion. Then we solve for ''e<sup>x</sup>'' to deduce that <math display="block"> e^x \leq \frac{1+x}{1-\frac{x^2}{2}} = 2\frac{1+x}{2-x^2} \leq 4, \qquad 0 \leq x\leq 1 </math> simply by maximizing the [[numerator]] and minimizing the [[denominator]]. Combining these estimates for ''e<sup>x</sup>'' we see that <math display="block"> |R_k(x)| \leq \frac{4|x|^{k+1}}{(k+1)!} \leq \frac{4}{(k+1)!}, \qquad -1\leq x \leq 1, </math> so the required precision is certainly reached, when <math display="block"> \frac{4}{(k+1)!} < 10^{-5} \quad \Longleftrightarrow \quad 4\cdot 10^5 < (k+1)! \quad \Longleftrightarrow \quad k \geq 9. </math> (See [[factorial]] or compute by hand the values <math display="inline">9! =362880</math> and <math display="inline">10! =3628800</math>.) As a conclusion, Taylor's theorem leads to the approximation <math display="block"> e^x = 1+x+\frac{x^2}{2!} + \cdots + \frac{x^9}{9!} + R_9(x), \qquad |R_9(x)| < 10^{-5}, \qquad -1\leq x \leq 1. </math> For instance, this approximation provides a [[decimal representation|decimal expression]] <math>e \approx 2.71828</math>, correct up to five decimal places.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)