Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Temporal logic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Prior's tense logic (TL) == The sentential tense logic introduced in ''Time and Modality'' has four (non-[[Truth function|truth-functional]]) [[modal operator]]s (in addition to all usual truth-functional operators in [[Propositional calculus|first-order propositional logic]]).<ref>{{Cite book|title=Time and modality: the John Locke lectures for 1955–6, delivered at the University of Oxford|last=Prior|first=Arthur Norman|publisher=The Clarendon Press|year=2003|isbn=9780198241584|location=Oxford|oclc=905630146|author-link=Arthur Prior}}</ref> * ''P'': "It was the case that..." (P stands for "past") * ''F'': "It will be the case that..." (F stands for "future") * ''G'': "It always will be the case that..." * ''H'': "It always was the case that..." These can be combined if we let ''π'' be an infinite path:<ref>{{Cite web|url=https://www.cas.mcmaster.ca/~lawford/2F03/Notes/model.pdf|title=An Introduction to Temporal Logics|last=Lawford|first=M.|date=2004|website=Department of Computer Science McMaster University}}</ref> * <math>\pi \vDash F G \phi</math>: "At a certain point, <math>\phi</math> is true at all future states of the path" * <math>\pi \vDash G F \phi</math>: "<math>\phi</math> is true at infinitely many states on the path" From ''P'' and ''F'' one can define ''G'' and ''H'', and vice versa: :<math>\begin{align} F &\equiv \lnot G\lnot \\ P &\equiv \lnot H\lnot \end{align}</math> === Syntax and semantics === A minimal syntax for TL is specified with the following [[Backus–Naur form|BNF grammar]]: :<math>\phi ::= a \;|\; \bot \;|\; \lnot\phi \;|\; \phi\lor\phi \;|\; G\phi \;|\; H\phi</math> where ''a'' is some [[atomic formula]].<ref>{{Cite book|url=https://plato.stanford.edu/archives/win2015/entries/logic-temporal/|title=The Stanford Encyclopedia of Philosophy|last1=Goranko|first1=Valentin|last2=Galton|first2=Antony|chapter=Temporal Logic |date=2015|publisher=Metaphysics Research Lab, Stanford University|editor-last=Zalta|editor-first=Edward N.|edition=Winter 2015}}</ref> [[Kripke model]]s are used to evaluate the truth of [[Sentence (mathematical logic)|sentences]] in TL. A pair ({{Var|T}}, <) of a set {{Var|T}} and a [[binary relation]] < on {{Var|T}} (called "precedence") is called a '''frame'''. A '''model''' is given by triple ({{Var|T}}, <, {{Var|V}}) of a frame and a function {{Var|V}} called a '''valuation''' that assigns to each pair ({{Var|a}}, {{Var|u}}) of an atomic formula and a time value some truth value. The notion "{{Var|ϕ}} is true in a model {{Var|U}}=({{Var|T}}, <, {{Var|V}}) at time {{Var|u}}" is abbreviated {{var|U}}[[Double turnstile|⊨]]{{var|ϕ}}[{{var|u}}]. With this notation,<ref>{{Cite book|title=The continuum companion to philosophical logic|last=Müller|first=Thomas|publisher=A&C Black|year=2011|editor-last=Horsten|editor-first=Leon|pages=329|chapter=Tense or temporal logic|chapter-url=http://kops.uni-konstanz.de/bitstream/handle/123456789/27232/Mueller_272322.pdf?sequence=2}}</ref> {| class="wikitable" |+ ! Statement ! ... is true just when |- | {{var|U}}⊨{{var|a}}[{{var|u}}] | {{var|V}}({{var|a}},{{var|u}})=true |- | {{var|U}}⊨¬{{var|ϕ}}[{{var|u}}] | not {{var|U}}⊨{{var|ϕ}}[{{var|u}}] |- | {{var|U}}⊨({{var|ϕ}}∧{{var|ψ}})[{{var|u}}] | {{var|U}}⊨{{var|ϕ}}[{{var|u}}] and {{var|U}}⊨{{var|ψ}}[{{var|u}}] |- | {{var|U}}⊨({{var|ϕ}}∨{{var|ψ}})[{{var|u}}] | {{var|U}}⊨{{var|ϕ}}[{{var|u}}] or {{var|U}}⊨{{var|ψ}}[{{var|u}}] |- | {{var|U}}⊨({{var|ϕ}}→{{var|ψ}})[{{var|u}}] | {{var|U}}⊨{{var|ψ}}[{{var|u}}] if {{var|U}}⊨{{var|ϕ}}[{{var|u}}] |- | {{var|U}}⊨G{{var|ϕ}}[{{var|u}}] | {{var|U}}⊨{{var|ϕ}}[{{var|v}}] for all {{var|v}} with {{var|u}}<{{var|v}} |- | {{var|U}}⊨H{{var|ϕ}}[{{var|u}}] | {{var|U}}⊨{{var|ϕ}}[{{var|v}}] for all {{var|v}} with {{var|v}}<{{var|u}} |} Given a class {{var|F}} of frames, a sentence {{var|ϕ}} of TL is * '''valid''' with respect to {{var|F}} if for every model {{var|U}}=({{var|T}},<,{{var|V}}) with ({{var|T}},<) in {{var|F}} and for every {{var|u}} in {{var|T}}, {{var|U}}⊨{{var|ϕ}}[{{var|u}}] * '''satisfiable''' with respect to {{var|F}} if there is a model {{var|U}}=({{var|T}},<,{{var|V}}) with ({{var|T}},<) in {{var|F}} such that for some {{var|u}} in {{var|T}}, {{var|U}}⊨{{var|ϕ}}[{{var|u}}] * a '''consequence''' of a sentence {{var|ψ}} with respect to {{var|F}} if for every model {{var|U}}=({{var|T}},<,{{var|V}}) with ({{var|T}},<) in {{var|F}} and for every {{var|u}} in {{var|T}}, if {{var|U}}⊨{{var|ψ}}[{{var|u}}], then {{var|U}}⊨{{var|ϕ}}[{{var|u}}] Many sentences are only valid for a limited class of frames. It is common to restrict the class of frames to those with a relation < that is [[Transitive reduction|transitive]], [[Antisymmetric relation|antisymmetric]], [[Reflexive relation|reflexive]], [[Trichotomy (mathematics)|trichotomic]], [[irreflexive]], [[Total order|total]], [[Dense order|dense]], or some combination of these. === A minimal axiomatic logic === Burgess outlines a logic that makes no assumptions on the relation <, but allows for meaningful deductions, based on the following axiom schema:<ref>{{Cite book|title=Philosophical logic|last=Burgess|first=John P.|publisher=Princeton University Press|year=2009|isbn=9781400830497|location=Princeton, New Jersey|page=21|oclc=777375659|author-link=John P. Burgess}}</ref> # {{var|A}} where {{var|A}} is a [[Tautology (logic)|tautology]] of [[first-order logic]] # G({{var|A}}→{{var|B}})→(G{{var|A}}→G{{var|B}}) # H({{var|A}}→{{var|B}})→(H{{var|A}}→H{{var|B}}) # {{var|A}}→GP{{var|A}} # {{var|A}}→HF{{var|A}} with the following rules of deduction: # given {{var|A}}→{{var|B}} and {{var|A}}, deduce {{var|B}} ([[modus ponens]]) # given ''a tautology'' {{var|A}}, infer G{{var|A}} # given ''a tautology'' {{var|A}}, infer H{{var|A}} One can derive the following rules: # '''Becker's rule''': given {{var|A}}→{{var|B}}, deduce T{{var|A}}→T{{var|B}} where T is a '''tense''', any sequence made of G, H, F, and P. # '''Mirroring''': given a theorem {{var|A}}, deduce its '''mirror statement''' {{var|A}}<sup>§</sup>, which is obtained by replacing G by H (and so F by P) and vice versa. # '''Duality''': given a theorem {{var|A}}, deduce its '''dual statement''' {{var|A}}*, which is obtained by interchanging ∧ with ∨, G with F, and H with P. === Translation to predicate logic === Burgess gives a ''Meredith translation'' from statements in TL into statements in [[first-order logic]] with one free variable {{Var|x}}<sub>0</sub> (representing the present moment). This translation {{Var|M}} is defined recursively as follows:<ref>{{Cite book|title=Philosophical logic|last=Burgess|first=John P.|publisher=Princeton University Press|year=2009|isbn=9781400830497|location=Princeton, New Jersey|page=17|oclc=777375659|author-link=John P. Burgess}}</ref> :<math>\begin{align} & M(a) &&= a^*x_0 \\ & M(\lnot \phi) &&= \lnot M(\phi) \\ & M(\phi\land\psi) &&= M(\phi)\land M(\psi) \\ & M(\mathsf{G}\phi) &&= \forall x_1 (x_0<x_1\rightarrow M(A^+)) \\ & M(\mathsf{H}\phi) &&= \forall x_1 (x_1<x_0\rightarrow M(A^+)) \end{align}</math> where <math>A^+</math> is the sentence {{mvar|A}} with all variable indices incremented by 1 and <math>a^*</math> is a one-place predicate defined by <math>x \mapsto V(a, x)</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)