Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Theta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Integral representations== The Jacobi theta functions have the following integral representations: :<math>\begin{align} \vartheta_{00} (z; \tau) &= -i\int_{i-\infty}^{i+\infty} e^{i \pi \tau u^2} \frac{\cos(2\pi uz + \pi u)}{\sin(\pi u)} \mathrm{d}u; \\[6pt] \vartheta_{01} (z; \tau) &= -i\int_{i-\infty}^{i+\infty} e^{i \pi \tau u^2} \frac{\cos (2\pi uz)}{\sin (\pi u)} \mathrm{d}u; \\[6pt] \vartheta_{10} (z; \tau) &= -ie^{i \pi z + \frac14 i \pi\tau} \int_{i-\infty}^{i+\infty} e^{i\pi\tau u^2} \frac{\cos(2\pi uz + \pi u + \pi \tau u)}{\sin (\pi u)} \mathrm{d}u; \\[6pt] \vartheta_{11} (z; \tau) &= e^{i \pi z + \frac14 i \pi \tau} \int_{i-\infty}^{i+\infty} e^{i\pi\tau u^2} \frac{\cos(2\pi uz + \pi \tau u)}{\sin(\pi u)} \mathrm{d}u. \end{align}</math> The Theta Nullwert function <math> \theta_{3}(q) </math> as this integral identity: :<math>\theta_{3}(q) = 1 + \frac{4q\sqrt{\ln(1/q)}}{\sqrt{\pi}} \int_{0}^{\infty} \frac{\exp[-\ln(1/q)\,x^2]\{1 - q^2\cos[2\ln(1/q)\,x]\}}{1 - 2q^2\cos[2\ln(1/q)\,x] + q^4} \,\mathrm{d}x </math> This formula was discussed in the essay ''Square series generating function transformations'' by the mathematician Maxie Schmidt from Georgia in Atlanta. Based on this formula following three eminent examples are given: :<math>\biggl[\frac{2}{\pi}K\bigl(\frac{1}{2}\sqrt{2}\bigr)\biggr]^{1/2} = \theta_{3}\bigl[\exp(-\pi)\bigr] = 1 + 4\exp(-\pi) \int_{0}^{\infty} \frac{\exp(-\pi x^2)[1 - \exp(-2\pi)\cos(2\pi x)]}{1 - 2\exp(-2\pi)\cos(2\pi x) + \exp(-4\pi)} \,\mathrm{d}x </math> :<math>\biggl[\frac{2}{\pi}K(\sqrt{2} - 1)\biggr]^{1/2} = \theta_{3}\bigl[\exp(-\sqrt{2}\,\pi)\bigr] = 1 + 4\,\sqrt[4]{2}\exp(-\sqrt{2}\,\pi) \int_{0}^{\infty} \frac{\exp(-\sqrt{2}\,\pi x^2)[1 - \exp(-2\sqrt{2}\,\pi)\cos(2\sqrt{2}\,\pi x)]}{1 - 2\exp(-2\sqrt{2}\,\pi)\cos(2\sqrt{2}\,\pi x) + \exp(-4\sqrt{2}\,\pi)} \,\mathrm{d}x </math> :<math>\biggl\{\frac{2}{\pi}K\bigl[\sin\bigl(\frac{\pi}{12}\bigr)\bigr]\biggr\}^{1/2} = \theta_{3}\bigl[\exp(-\sqrt{3}\,\pi)\bigr] = 1 + 4\,\sqrt[4]{3}\exp(-\sqrt{3}\,\pi) \int_{0}^{\infty} \frac{\exp(-\sqrt{3}\,\pi x^2)[1 - \exp(-2\sqrt{3}\,\pi)\cos(2\sqrt{3}\,\pi x)]}{1 - 2\exp(-2\sqrt{3}\,\pi)\cos(2\sqrt{3}\,\pi x) + \exp(-4\sqrt{3}\,\pi)} \,\mathrm{d}x </math> Furthermore, the theta examples <math> \theta_{3}(\tfrac{1}{2}) </math> and <math> \theta_{3}(\tfrac{1}{3}) </math> shall be displayed: :<math>\theta_{3}\left(\frac{1}{2}\right) = 1+2\sum_{n = 1}^{\infty} \frac{1}{2^{n^2}} = 1 + 2\pi^{-1/2}\sqrt{\ln(2)} \int_{0}^{\infty} \frac{\exp[-\ln(2)\,x^2]\{16 - 4\cos[2\ln(2)\,x]\}}{17 - 8\cos[2\ln(2)\,x]} \,\mathrm{d}x </math> :<math>\theta_{3}\left(\frac{1}{2}\right) = 2.128936827211877158669\ldots </math> :<math>\theta_{3}\left(\frac{1}{3}\right) = 1+2\sum_{n = 1}^{\infty} \frac{1}{3^{n^2}} = 1 + \frac{4}{3}\pi^{-1/2}\sqrt{\ln(3)} \int_{0}^{\infty} \frac{\exp[-\ln(3)\,x^2]\{81 - 9\cos[2\ln(3)\,x]\}}{82 - 18\cos[2\ln(3)\,x]} \,\mathrm{d}x </math> :<math>\theta_{3}\left(\frac{1}{3}\right) = 1.691459681681715341348\ldots </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)