Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Topological vector space
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Defining topologies using strings=== Let <math>X</math> be a vector space and let <math>U_{\bull} = \left(U_i\right)_{i = 1}^{\infty}</math> be a sequence of subsets of <math>X.</math> Each set in the sequence <math>U_{\bull}</math> is called a '''{{visible anchor|knot}}''' of <math>U_{\bull}</math> and for every index <math>i,</math> <math>U_i</math> is called the '''<math>i</math>-th knot''' of <math>U_{\bull}.</math> The set <math>U_1</math> is called the '''beginning''' of <math>U_{\bull}.</math> The sequence <math>U_{\bull}</math> is/is a:{{sfn|Adasch|Ernst|Keim|1978|pp=5-9}}{{sfn|Schechter|1996|pp=721-751}}{{sfn|Narici|Beckenstein|2011|pp=371-423}} * '''{{visible anchor|Summative}}''' if <math>U_{i+1} + U_{i+1} \subseteq U_i</math> for every index <math>i.</math> * '''[[Balanced set|Balanced]]''' (resp. '''[[Absorbing set|absorbing]]''', '''closed''',<ref group="note">The topological properties of course also require that <math>X</math> be a TVS.</ref> '''convex''', '''open''', '''[[Symmetric set|symmetric]]''', '''[[Barrelled space|barrelled]]''', '''[[Absolutely convex set|absolutely convex/disked]]''', etc.) if this is true of every <math>U_i.</math> * '''{{visible anchor|String}}''' if <math>U_{\bull}</math> is summative, absorbing, and balanced. * '''{{visible anchor|Topological string}}''' or a '''{{visible anchor|neighborhood string}}''' in a TVS <math>X</math> if <math>U_{\bull}</math> is a string and each of its knots is a neighborhood of the origin in <math>X.</math> <!-------- START: REMOVED DEFINTION -------------- '''Definition''' ('''Ultrabarrel'''/'''suprabarrel'''): A subset of a TVS <math>X</math> is called an '''ultrabarrel''' (resp. '''suprabarrel''') if it is the beginning of some closed string (resp. of some string) in <math>X.</math> ----------- END: REMOVED DEFINTION ---------------> If <math>U</math> is an [[Absorbing set|absorbing]] [[Absolutely convex set|disk]] in a vector space <math>X</math> then the sequence defined by <math>U_i := 2^{1-i} U</math> forms a string beginning with <math>U_1 = U.</math> This is called the '''natural string of <math>U</math>'''{{sfn|Adasch|Ernst|Keim|1978|pp=5-9}} Moreover, if a vector space <math>X</math> has countable dimension then every string contains an [[Absolutely convex set|absolutely convex]] string. Summative sequences of sets have the particularly nice property that they define non-negative continuous real-valued [[subadditive]] functions. These functions can then be used to prove many of the basic properties of topological vector spaces. {{Math theorem|name=Theorem|note=<math>\R</math>-valued function induced by a string|math_statement= Let <math>U_{\bull} = \left(U_i\right)_{i=0}^{\infty}</math> be a collection of subsets of a vector space such that <math>0 \in U_i</math> and <math>U_{i+1} + U_{i+1} \subseteq U_i</math> for all <math>i \geq 0.</math> For all <math>u \in U_0,</math> let <math display=block>\mathbb{S}(u) := \left\{n_{\bull} = \left(n_1, \ldots, n_k\right) ~:~ k \geq 1, n_i \geq 0 \text{ for all } i, \text{ and } u \in U_{n_1} + \cdots + U_{n_k}\right\}.</math> Define <math>f : X \to [0, 1]</math> by <math>f(x) = 1</math> if <math>x \not\in U_0</math> and otherwise let <math display=block>f(x) := \inf_{} \left\{2^{- n_1} + \cdots 2^{- n_k} ~:~ n_{\bull} = \left(n_1, \ldots, n_k\right) \in \mathbb{S}(x)\right\}.</math> Then <math>f</math> is subadditive (meaning <math>f(x + y) \leq f(x) + f(y)</math> for all <math>x, y \in X</math>) and <math>f = 0</math> on <math display=inline>\bigcap_{i \geq 0} U_i;</math> so in particular, <math>f(0) = 0.</math> If all <math>U_i</math> are [[symmetric set]]s then <math>f(-x) = f(x)</math> and if all <math>U_i</math> are balanced then <math>f(s x) \leq f(x)</math> for all scalars <math>s</math> such that <math>|s| \leq 1</math> and all <math>x \in X.</math> If <math>X</math> is a topological vector space and if all <math>U_i</math> are neighborhoods of the origin then <math>f</math> is continuous, where if in addition <math>X</math> is Hausdorff and <math>U_{\bull}</math> forms a basis of balanced neighborhoods of the origin in <math>X</math> then <math>d(x, y) := f(x - y)</math> is a metric defining the vector topology on <math>X.</math> <!--- This theorem is true more generally for commutative additive [[topological group]]s. ---> }} A proof of the above theorem is given in the article on [[Metrizable topological vector space#Additive sequences|metrizable topological vector spaces]]. If <math>U_{\bull} = \left(U_i\right)_{i \in \N}</math> and <math>V_{\bull} = \left(V_i\right)_{i \in \N}</math> are two collections of subsets of a vector space <math>X</math> and if <math>s</math> is a scalar, then by definition:{{sfn|Adasch|Ernst|Keim|1978|pp=5-9}} * <math>V_{\bull}</math> '''contains''' <math>U_{\bull}</math>: <math>\ U_{\bull} \subseteq V_{\bull}</math> if and only if <math>U_i \subseteq V_i</math> for every index <math>i.</math> * '''Set of knots''': <math>\ \operatorname{Knots} U_{\bull} := \left\{U_i : i \in \N\right\}.</math> * '''Kernel''': <math display=inline>\ \ker U_{\bull} := \bigcap_{i \in \N} U_i.</math> * '''Scalar multiple''': <math>\ s U_{\bull} := \left(s U_i\right)_{i \in \N}.</math> * '''Sum''': <math>\ U_{\bull} + V_{\bull} := \left(U_i + V_i\right)_{i \in \N}.</math> * '''Intersection''': <math>\ U_{\bull} \cap V_{\bull} := \left(U_i \cap V_i\right)_{i \in \N}.</math> If <math>\mathbb{S}</math> is a collection sequences of subsets of <math>X,</math> then <math>\mathbb{S}</math> is said to be '''directed''' ('''downwards''') '''under inclusion''' or simply '''directed downward''' if <math>\mathbb{S}</math> is not empty and for all <math>U_{\bull}, V_{\bull} \in \mathbb{S},</math> there exists some <math>W_{\bull} \in \mathbb{S}</math> such that <math>W_{\bull} \subseteq U_{\bull}</math> and <math>W_{\bull} \subseteq V_{\bull}</math> (said differently, if and only if <math>\mathbb{S}</math> is a [[Filter (set theory)|prefilter]] with respect to the containment <math>\,\subseteq\,</math> defined above). '''Notation''': Let <math display=inline>\operatorname{Knots} \mathbb{S} := \bigcup_{U_{\bull} \in \mathbb{S}} \operatorname{Knots} U_{\bull}</math> be the set of all knots of all strings in <math>\mathbb{S}.</math> Defining vector topologies using collections of strings is particularly useful for defining classes of TVSs that are not necessarily locally convex. {{Math theorem|name=Theorem{{sfn|Adasch|Ernst|Keim|1978|pp=5-9}}|note=Topology induced by strings|math_statement=If <math>(X, \tau)</math> is a topological vector space then there exists a set <math>\mathbb{S}</math><ref group=proof>This condition is satisfied if <math>\mathbb{S}</math> denotes the set of all topological strings in <math>(X, \tau).</math></ref> of neighborhood strings in <math>X</math> that is directed downward and such that the set of all knots of all strings in <math>\mathbb{S}</math> is a [[neighborhood basis]] at the origin for <math>(X, \tau).</math> Such a collection of strings is said to be {{em|<math>\tau</math> '''fundamental'''}}. Conversely, if <math>X</math> is a vector space and if <math>\mathbb{S}</math> is a collection of strings in <math>X</math> that is directed downward, then the set <math>\operatorname{Knots} \mathbb{S}</math> of all knots of all strings in <math>\mathbb{S}</math> forms a [[neighborhood basis]] at the origin for a vector topology on <math>X.</math> In this case, this topology is denoted by <math>\tau_\mathbb{S}</math> and it is called the '''topology generated by <math>\mathbb{S}.</math>''' }} If <math>\mathbb{S}</math> is the set of all topological strings in a TVS <math>(X, \tau)</math> then <math>\tau_{\mathbb{S}} = \tau.</math>{{sfn|Adasch|Ernst|Keim|1978|pp=5-9}} A Hausdorff TVS is [[Metrizable topological vector space|metrizable]] [[if and only if]] its topology can be induced by a single topological string.{{sfn|Adasch|Ernst|Keim|1978|pp=10-15}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)