Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Total order
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Finite total orders=== A simple [[counting]] argument will verify that any non-empty finite totally ordered set (and hence any non-empty subset thereof) has a least element. Thus every finite total order is in fact a [[well order]]. Either by direct proof or by observing that every well order is [[order isomorphic]] to an [[Ordinal number|ordinal]] one may show that every finite total order is [[order isomorphic]] to an [[initial segment]] of the natural numbers ordered by <. In other words, a total order on a set with ''k'' elements induces a bijection with the first ''k'' natural numbers. Hence it is common to index finite total orders or well orders with [[order type]] ω by natural numbers in a fashion which respects the ordering (either starting with zero or with one).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)