Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Trapezoidal rule
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Proof === First suppose that <math>h=\frac{b-a}{N}</math> and <math>a_k=a+(k-1)h</math>. Let <math display="block"> g_k(t) = \frac{1}{2} t[f(a_k)+f(a_k+t)] - \int_{a_k}^{a_k+t} f(x) \, dx</math> be the function such that <math> |g_k(h)| </math> is the error of the trapezoidal rule on one of the intervals, <math> [a_k, a_k+h] </math>. Then <math display="block"> {dg_k \over dt}={1 \over 2}[f(a_k)+f(a_k+t)]+{1\over2}t\cdot f'(a_k+t)-f(a_k+t),</math> and <math display="block"> {d^2g_k \over dt^2}={1\over 2}t\cdot f''(a_k+t).</math> Now suppose that <math> \left| f''(x) \right| \leq \left| f''(\xi) \right|, </math> which holds if <math> f </math> is sufficiently smooth. It then follows that <math display="block"> \left| f''(a_k+t) \right| \leq f''(\xi)</math> which is equivalent to <math> -f''(\xi) \leq f''(a_k+t) \leq f''(\xi)</math>, or <math> -\frac{f''(\xi)t}{2} \leq g_k''(t) \leq \frac{f''(\xi)t}{2}.</math> Since <math> g_k'(0)=0</math> and <math> g_k(0)=0</math>, <math display="block"> \int_0^t g_k''(x) dx = g_k'(t)</math> and <math display="block"> \int_0^t g_k'(x) dx = g_k(t).</math> Using these results, we find <math display="block"> -\frac{f''(\xi)t^2}{4} \leq g_k'(t) \leq \frac{f''(\xi)t^2}{4}</math> and <math display="block"> -\frac{f''(\xi)t^3}{12} \leq g_k(t) \leq \frac{f''(\xi)t^3}{12}</math> Letting <math> t = h </math> we find <math display="block"> -\frac{f''(\xi)h^3}{12} \leq g_k(h) \leq \frac{f''(\xi)h^3}{12}.</math> Summing all of the local error terms we find <math display="block"> \sum_{k=1}^{N} g_k(h) = \frac{b-a}{N} \left[ {f(a) + f(b) \over 2} + \sum_{k=1}^{N-1} f \left( a+k \frac{b-a}{N} \right) \right] - \int_a^b f(x)dx.</math> But we also have <math display="block"> - \sum_{k=1}^N \frac{f''(\xi)h^3}{12} \leq \sum_{k=1}^N g_k(h) \leq \sum_{k=1}^N \frac{f''(\xi)h^3}{12}</math> and <math display="block"> \sum_{k=1}^N \frac{f''(\xi)h^3}{12}=\frac{f''(\xi)h^3N}{12},</math> so that <math display="block"> -\frac{f''(\xi)h^3N}{12} \leq \frac{b-a}{N} \left[ {f(a) + f(b) \over 2} + \sum_{k=1}^{N-1} f \left( a+k \frac{b-a}{N} \right) \right]-\int_a^bf(x)dx \leq \frac{f''(\xi)h^3N}{12}.</math> Therefore the total error is bounded by <math display="block"> \text{error} = \int_a^b f(x)\,dx - \frac{b-a}{N} \left[ {f(a) + f(b) \over 2} + \sum_{k=1}^{N-1} f \left( a+k \frac{b-a}{N} \right) \right] = \frac{f''(\xi)h^3N}{12}=\frac{f''(\xi)(b-a)^3}{12N^2}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)