Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Tridiagonal matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Similarity to symmetric tridiagonal matrix === For ''unsymmetric'' or ''nonsymmetric'' tridiagonal matrices one can compute the eigendecomposition using a similarity transformation. Given a real tridiagonal, nonsymmetric matrix :<math> T = \begin{pmatrix} a_1 & b_1 \\ c_1 & a_2 & b_2 \\ & c_2 & \ddots & \ddots \\ & & \ddots & \ddots & b_{n-1} \\ & & & c_{n-1} & a_n \end{pmatrix} </math> where <math>b_i \neq c_i </math>. Assume that each product of off-diagonal entries is {{em|strictly}} positive <math>b_i c_i > 0 </math> and define a transformation matrix <math>D</math> by<ref name=kreer_operator>{{Cite journal | last1 = Kreer | first1 = M. | title = Analytic birth-death processes: a Hilbert space approach | doi = 10.1016/0304-4149(94)90112-0 | journal = Stochastic Processes and Their Applications | volume = 49 | issue = 1 | pages = 65–74 | year = 1994 }}</ref> :<math> D := \operatorname{diag}(\delta_1 , \dots, \delta_n) \quad \text{for} \quad \delta_i := \begin{cases} 1 & , \, i=1 \\ \sqrt{\frac{c_{i-1} \dots c_1}{b_{i-1} \dots b_1}} & , \, i=2,\dots,n \,. \end{cases} </math> The [[Matrix_similarity|similarity transformation]] <math>D^{-1} T D </math> yields a ''symmetric'' tridiagonal matrix <math>J</math> by:<ref>{{cite web |first=Gérard |last=Meurant |title=Tridiagonal matrices |date=October 2008 |url=http://www.math.hkbu.edu.hk/ICM/LecturesAndSeminars/08OctMaterials/1/Slide3.pdf |via=Institute for Computational Mathematics, Hong Kong Baptist University}}</ref><ref name=kreer_operator/> :<math> J:=D^{-1} T D = \begin{pmatrix} a_1 & \sgn b_1 \, \sqrt{b_1 c_1} \\ \sgn b_1 \, \sqrt{b_1 c_1} & a_2 & \sgn b_2 \, \sqrt{b_2 c_2} \\ & \sgn b_2 \, \sqrt{b_2 c_2} & \ddots & \ddots \\ & & \ddots & \ddots & \sgn b_{n-1} \, \sqrt{b_{n-1} c_{n-1}} \\ & & & \sgn b_{n-1} \, \sqrt{b_{n-1} c_{n-1}} & a_n \end{pmatrix} \,. </math> Note that <math>T</math> and <math>J</math> have the same eigenvalues.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)