Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Universal property
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Products=== A [[categorical product]] can be characterized by a universal construction. For concreteness, one may consider the [[Cartesian product]] in '''[[Set (category theory)|Set]]''', the [[direct product]] in '''[[Grp (category theory)|Grp]]''', or the [[product topology]] in '''[[Top (category theory)|Top]]''', where products exist. Let <math>X</math> and <math>Y</math> be objects of a category <math>\mathcal{C}</math> with finite products. The product of <math>X</math> and <math>Y</math> is an object <math>X</math> × <math>Y</math> together with two morphisms :<math>\pi_1</math> : <math>X \times Y \to X</math> :<math>\pi_2</math> : <math>X \times Y \to Y</math> such that for any other object <math>Z</math> of <math>\mathcal{C}</math> and morphisms <math>f: Z \to X</math> and <math>g: Z \to Y</math> there exists a unique morphism <math>h: Z \to X \times Y</math> such that <math>f = \pi_1 \circ h</math> and <math>g = \pi_2 \circ h</math>. To understand this characterization as a universal property, take the category <math>\mathcal{D}</math> to be the [[product category]] <math>\mathcal{C} \times \mathcal{C}</math> and define the [[diagonal functor]] : <math>\Delta: \mathcal{C} \to \mathcal{C} \times \mathcal{C}</math> by <math>\Delta(X) = (X, X)</math> and <math>\Delta(f: X \to Y) = (f, f)</math>. Then <math>(X \times Y, (\pi_1, \pi_2))</math> is a universal morphism from <math>\Delta</math> to the object <math>(X, Y)</math> of <math>\mathcal{C} \times \mathcal{C}</math>: if <math>(f, g)</math> is any morphism from <math>(Z, Z)</math> to <math>(X, Y)</math>, then it must equal a morphism <math>\Delta(h: Z \to X \times Y) = (h,h)</math> from <math>\Delta(Z) = (Z, Z)</math> to <math>\Delta(X \times Y) = (X \times Y, X \times Y)</math> followed by <math>(\pi_1, \pi_2)</math>. As a commutative diagram: [[File:Universal-property-products.svg|center|484x484px|Commutative diagram showing how products have a universal property.]]For the example of the Cartesian product in '''Set''', the morphism <math>(\pi_1, \pi_2)</math> comprises the two projections <math>\pi_1(x,y) = x</math> and <math>\pi_2(x,y) = y</math>. Given any set <math>Z</math> and functions <math>f,g</math> the unique map such that the required diagram commutes is given by <math>h = \langle x,y\rangle(z) = (f(z), g(z))</math>.<ref>{{Cite arXiv |last1=Fong |first1=Brendan |last2=Spivak |first2=David I. |date=2018-10-12 |title=Seven Sketches in Compositionality: An Invitation to Applied Category Theory |class=math.CT |eprint=1803.05316 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)