Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Vector projection
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definitions in terms of a and b == When {{mvar|θ}} is not known, the cosine of {{mvar|θ}} can be computed in terms of {{math|'''a'''}} and {{math|'''b'''}}, by the following property of the [[dot product]] {{math|'''a''' ⋅ '''b'''}} <math display="block"> \mathbf{a} \cdot \mathbf{b} = \left\|\mathbf{a}\right\| \left\|\mathbf{b}\right\| \cos \theta</math> ===Scalar projection=== By the above-mentioned property of the dot product, the definition of the scalar projection becomes:<ref name=":1" /> In two dimensions, this becomes <math display="block">a_1 = \frac {\mathbf{a}_x \mathbf{b}_x + \mathbf{a}_y \mathbf{b}_y} {\left\|\mathbf{b}\right\|}.</math> ===Vector projection=== Similarly, the definition of the vector projection of {{math|'''a'''}} onto {{math|'''b'''}} becomes:<ref name=":1" /> <math display="block">\mathbf{a}_1 = a_1 \mathbf{\hat b} = \frac {\mathbf{a} \cdot \mathbf{b}} {\left\|\mathbf{b}\right\| } \frac {\mathbf{b}} {\left\|\mathbf{b}\right\|},</math> which is equivalent to either <math display="block">\mathbf{a}_1 = \left(\mathbf{a} \cdot \mathbf{\hat b}\right) \mathbf{\hat b},</math> or<ref>{{cite web|url=http://www.math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/vcalc/dotprod/dotprod.html | title=Dot Products and Projections}} {{Dead link|date=January 2025}} </ref> <math display="block">\mathbf{a}_1 = \frac {\mathbf{a} \cdot \mathbf{b}} {\left\|\mathbf{b}\right\|^2}{\mathbf{b}} = \frac {\mathbf{a} \cdot \mathbf{b}} {\mathbf{b} \cdot \mathbf{b}}{\mathbf{b}} ~ .</math> ===Scalar rejection=== In two dimensions, the scalar rejection is equivalent to the projection of {{math|'''a'''}} onto <math>\mathbf{b}^\perp = \begin{pmatrix}-\mathbf{b}_y & \mathbf{b}_x\end{pmatrix}</math>, which is <math>\mathbf{b} = \begin{pmatrix}\mathbf{b}_x & \mathbf{b}_y\end{pmatrix}</math> rotated 90° to the left. Hence, <math display="block">a_2 = \left\|\mathbf{a}\right\| \sin \theta = \frac {\mathbf{a} \cdot \mathbf{b}^\perp} {\left\|\mathbf{b}\right\|} = \frac {\mathbf{a}_y \mathbf{b}_x - \mathbf{a}_x \mathbf{b}_y} {\left\|\mathbf{b}\right\| }.</math> Such a dot product is called the "perp dot product." ===Vector rejection=== By definition, <math display="block">\mathbf{a}_2 = \mathbf{a} - \mathbf{a}_1 </math> Hence, <math display="block">\mathbf{a}_2 = \mathbf{a} - \frac {\mathbf{a} \cdot \mathbf{b}} {\mathbf{b} \cdot \mathbf{b}}{\mathbf{b}}.</math> By using the Scalar rejection using the perp dot product this gives <math display="block">\mathbf{a}_2 = \frac{\mathbf{a}\cdot\mathbf{b}^\perp}{\mathbf{b}\cdot\mathbf{b}}\mathbf{b}^\perp</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)